For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/453,571, entitled INDIVIDUALIZED PHARMACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 14 Jun. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/824,604, entitled COMPUTATIONAL SYSTEMS RELATED TO NUTRACEUTICALS, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Clarence T. Tegreene and Lowell L. Wood, Jr. as inventors, filed 28 Jun. 2007, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/478,341, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS RELATED TO INDIVIDUALIZED NUTRACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 28 Jun. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/478,296, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS RELATED TO INDIVIDUALIZED NUTRACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 28 Jun. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/486,998, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS RELATED TO INDIVIDUALIZED PHARMACEUTICAL AND NUTRACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 14 Jul. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/486,973, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS RELATED TO INDIVIDUALIZED PHARMACEUTICAL AND NUTRACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 14 Jul. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/474,109, entitled CUSTOMIZED VISUAL MARKING FOR MEDICATION LABELING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 23 Jun. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/515,357, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS AND METHODS RELATED TO NUTRACEUTICAL AGENT SELECTION AND DOSING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 1 Sep. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/518,540, entitled INDIVIDUALIZED PHARMACEUTICAL SELECTION AND PACKAGING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 8 Sep. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/523,766, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS AND METHODS RELATED TO NUTRACEUTICAL AGENT SELECTION AND DOSING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 18 Sep. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/523,809, entitled COMPUTATIONAL AND/OR CONTROL SYSTEMS AND METHODS RELATED TO NUTRACEUTICAL AGENT SELECTION AND DOSING, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 18 Sep. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/637,638, entitled METHODS AND SYSTEMS FOR ANALYSIS OF NUTRACEUTICAL ASSOCIATED COMPONENTS, naming Edward K. Y. Jung, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 11 Dec. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/637,616, entitled METHODS AND SYSTEMS FOR ANALYSIS OF NUTRACEUTICAL ASSOCIATED COMPONENTS, naming Edward K. Y. Jung, Eric C. Leuthardt, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., and Lowell L. Wood, Jr. as inventors, filed 11 Dec. 2006, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/314,945, entitled GENERATING A REQUEST FROM A NUTRACEUTICAL INVENTORY, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 20 Dec. 2005, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of U.S. patent application Ser. No. 11/291,482, entitled GENERATING A NUTRACEUTICAL REQUEST FROM AN INVENTORY, naming Edward K. Y. Jung, Royce A. Levien, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 30 Nov. 2005, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003, available at http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm. The present applicant entity has provided above a specific reference to the application(s) from which priority is being claimed as recited by statute. Applicant entity understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, applicant entity understands that the USPTO's computer programs have certain data entry requirements, and hence applicant entity is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary and/or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s).
All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)).
The present disclosure relates to computational systems and methods related to nutraceuticals.
In some embodiments a method is provided that includes accepting input associated with nutraceutical usage by one or more individuals, accepting input associated with one or more parameters related to the one or more individuals, and processing the input associated with the nutraceutical usage by the one or more individuals and the input associated with the one or more parameters related to the one or more individuals. The method may optionally include displaying results of the processing. The method may optionally include comparing results of the processing of the one or more individuals with one or more substantially similar results obtained for one or more other individuals. The method may optionally include displaying results of the comparing. In addition to the foregoing, other method aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a method is provided that includes accepting input associated with nutraceutical usage by one or more individuals, accepting input associated with one or more parameters related to the one or more individuals, and transmitting one or more signals that include information related to the input associated with the nutraceutical usage by the one or more individuals and to the input associated with the one or more parameters related to the one or more individuals. In addition to the foregoing, other method aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a method is provided that includes accepting input associated with nutraceutical usage by one or more individuals, accepting input associated with one or more parameters related to the one or more individuals, processing the input associated with the nutraceutical usage by the one or more individuals and the input associated with the one or more parameters related to the one or more individuals, and transmitting one or more signals that include information related to results of the processing. In addition to the foregoing, other method aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a method is provided that includes receiving one or more signals that include information related to results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals and determining one or more nutraceutical associated parameters based on the results of the processing. The method may optionally include transmitting the one or more signals that include information related to the determining one or more nutraceutical associated parameters based on the results of the processing. In addition to the foregoing, other method aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a method is provided that includes receiving one or more signals that include information related to determining one or more nutraceutical associated parameters based on results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals and displaying the information. In addition to the foregoing, other method aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a system is provided that includes means for accepting input associated with nutraceutical usage by one or more individuals, means for accepting input associated with one or more parameters related to the one or more individuals, and means for processing responsive to the means for accepting input associated with the nutraceutical usage by the one or more individuals and the means for accepting input associated with the one or more parameters related to the one or more individuals. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a system is provided that includes means for accepting input associated with nutraceutical usage by one or more individuals, means for accepting input associated with one or more parameters related to the one or more individuals, and means for transmitting one or more signals responsive to the means for accepting input associated with the nutraceutical usage by the one or more individuals and to the means for accepting input associated with the one or more parameters related to the one or more individuals. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a system is provided that includes means for accepting input associated with nutraceutical usage by one or more individuals, means for accepting input associated with one or more parameters related to the one or more individuals, means for processing responsive to the means for accepting input associated with the nutraceutical usage by the one or more individuals and the means for accepting input associated with the one or more parameters related to the one or more individuals, and means for transmitting one or more signals responsive to the means for processing. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a system is provided that includes means for receiving one or more signals that include information related to results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals and means for determining one or more nutraceutical associated parameters responsive to the means for receiving. The system may optionally include means for transmitting one or more signals responsive to the means for determining. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments a system is provided that includes means for receiving one or more signals that include information related to determining one or more nutraceutical associated parameters based on results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals and means for displaying the information. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments, means include but are not limited to circuitry and/or programming for effecting the herein-referenced functional aspects; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced functional aspects depending upon the design choices of the system designer. In addition to the foregoing, other system aspects means are described in the claims, drawings, and/or text forming a part of the present disclosure.
In some embodiments, related systems include but are not limited to circuitry and/or programming for effecting the herein-referenced method aspects; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to effect the herein-referenced method aspects depending upon the design choices of the system designer. In addition to the foregoing, other system aspects are described in the claims, drawings, and/or text forming a part of the present application.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings, claims, and the following detailed description.
FIG. 1 illustrates an example system 100 in which embodiments may be implemented.
FIG. 2 illustrates an operational flow 200 representing example operations related to processing and displaying input related to one or more nutraceuticals.
FIG. 3 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 4 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 5 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 6 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 7 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 8 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 9 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 10 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 11 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 12 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 13 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 14 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 15 illustrates alternative embodiments of the example operation flow of FIG. 2.
FIG. 16 illustrates an operational flow 1600 representing example operations related to accepting and transmitting input related to one or more nutraceuticals.
FIG. 17 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 18 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 19 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 20 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 21 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 22 illustrates alternative embodiments of the example operation flow of FIG. 16.
FIG. 23 illustrates an operational flow 2300 representing example operations related to accepting, processing, and transmitting input related to one or more nutraceuticals.
FIG. 24 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 25 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 26 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 27 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 28 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 29 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 30 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 31 illustrates alternative embodiments of the example operation flow of FIG. 23.
FIG. 32 illustrates an operational flow 3200 representing example operations related to receiving, determining and transmitting input related to one or more nutraceuticals.
FIG. 33 illustrates alternative embodiments of the example operation flow of FIG. 32.
FIG. 34 illustrates alternative embodiments of the example operation flow of FIG. 32.
FIG. 35 illustrates alternative embodiments of the example operation flow of FIG. 32.
FIG. 36 illustrates an operational flow 3600 representing example operations related to receiving and displaying input related to one or more nutraceuticals.
FIG. 37 illustrates alternative embodiments of the example operation flow of FIG. 36.
FIG. 38 illustrates alternative embodiments of the example operation flow of FIG. 36.
FIG. 39 illustrates alternative embodiments of the example operation flow of FIG. 36.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
FIG. 1 illustrates an example system 100 in which embodiments may be implemented. In some embodiments, the system 100 is operable to provide a method and system 100 for nutraceutical related analysis. In some embodiments, system 100 may include one or more accepting units 110. In some embodiments, system 100 may include one or more computational units 120. In some embodiments, system 100 may include one or more display units 130. In some embodiments, system 100 may include one or more transmitting units 140. In some embodiments, system 100 may include one or more receiving units 150. In some embodiments, system 100 may include one or more user interfaces 160.
The system 100 can include one or more accepting units 110. In some embodiments, one or more accepting units 110 can include a physical device which allows input entry, such as a touchpad, keypad, hardwired telephone, and the like. In some embodiments, one or more accepting units 110 can include a wireless connection that allows the one or more accepting units 110 to accept input from one or more users 170 through a wireless connection. For example, in some embodiments, one or more accepting units 110 may accept input from one or more users 170 through use of a cellular telephone, a personal digital assistant, a wireless computer, and the like.
In some embodiments, one or more accepting units 110 can be used to intake information related to one or more parameters associated with one or more specified goals of an individual. In some embodiments, one or more accepting units 110 may be used to accept input related to one or more levels of one or more metabolic indicators related to one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more levels of one or more metabolic activities linked to one or more individuals. In some embodiments, one or more accepting units 110 may accept one or more levels of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input related pharmaceutical usage by one or more individuals. In some embodiments, one or more accepting units 110 may accept input from another device. For example, in some embodiments, one or more accepting units 110 may accept input from a diagnostic device. Such diagnostic devices include, but are not limited to, devices used to analyze bodily samples obtained from an individual (i.e., blood, urine, saliva, synovial fluid, pleural fluid, peritoneal fluid, breath, skin, tissue, tears, mucus, genital products, hair, fecal material, and the like), devices used to analyze the appearance of an individual (i.e., eye color, skin color, hair color, the presence or absence of bags under the eyes, presence or absence of hair, and the like), devices used to analyze a characteristic of the individual (i.e., speech, reaction time, reflexes, temperature, eye dilation, retinal profile, height, weight, waistline, and the like), and other devices used to diagnose and/or analyze an individual.
The system 100 may include one or more computational units 120. In some embodiments, one or more computational units 120 may be used to process input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals. A computational unit 120 may process input in numerous ways. For example, in some embodiments, one or more computational units 120 may compare input related to an individual to one or more other individuals. Accordingly, in some embodiments, system 100 provides for comparison of an individual's nutraceutical usage to other individuals. In some embodiments, one or more computational units 120 may analyze input in a time dependent manner. For example, in some embodiments, one or more computational units 120 may be used to titrate nutraceutical usage may an individual. Accordingly, in some embodiments, an individual may be able to determine such factors as nutraceutical dosage, time of administration, route of administration, and the like, that will provide an individual with an increased benefit from nutraceutical usage.
Nutraceuticals typically include natural, bioactive chemical compounds or any substance that is a plant, food, an extracted part of a food, that provides medical or health benefits but which generally fall outside regulations controlling pharmaceuticals. Included in this category of substances may be foods, isolated nutrients, supplements and herbs. Nutraceuticals are often referred to as phytochemicals or functional foods and include dietary supplements. Numerous nutraceuticals have been described (i.e., Roberts et al., Nutraceuticals: The Complete Encyclopedia of Supplements, Herbs, Vitamins, and Healing Foods, 1st Edition, Perigee Trade (2001) and Susan G. Wynn, Emerging Therapies: Using Herbs and Nutraceuticals for Small Animals, American Animal Hospital Assn Press (1999); and Handbook of Nutraceuticals and Functional Foods., edited by Robert E. C. Wildman, CRC Press (2001)). Examples of nutraceuticals include, but are not limited to, Amino Acids, Terpenoids, Carotenoid Terpenoids (Lycopene, Beta-Carotene, Alpha-Carotene, Lutein, Zeaxanthin, Astaxanthin), Herbal Supplements, Homeopathic Supplements, Glandular Supplements, Non-Carotenoid Terpeniods (Perillyl Alcohol, Saponins, Terpeneol, Terpene Limonoids), Polyphenolics, Flavonoid Polyphenolics (Anthocyanins, Catechins, Isoflavones, Hesperetin, Naringin, Rutin, Quercetin, Silymarin, Tangeretin, Tannins), Phenolic Acids (Ellagic Acid, Chlorogenic Acid, Para-Coumaric Acid, Phytic Acid, Cinnamic Acid), Other Non-Flavonoid Polyphenolics (Curcumin, Resveratrol, Lignans), Glucosinolates, Isothiocyanates (Phenethyl Isothiocyanate, Benzyl Isothiocyanate, Sulforaphane), Indoles (Indole-3-Carbinol (I3C), Thiosulfonates, Phytosterols (Beta-Sitosterol), Anthraquinones (Senna, Barbaloin, Hypericin), Capsaicin, Piperine, Chlorophyll, Betaine, Pectin, Oxalic Acid, Acetyl-L-Carnitine, Allantoin, Androsterondiol, Androsterondione, Betaine (Trimethylglycine), Caffeine, Calcium pyvurate (Pyruvic Acid), Carnitine, Carnosine, Carotene (alpha & beta), Carotenoid (Total for beadlets), Choline, Chlorogenic Acid, Cholic Acid (Ox Bile), Chondroitin Sulfate, Chondroitin Sulfate (Total Mucopolysaccharides), Cholestin, Chrysin, Coenzyme Q10 (Co-Q10), Conjugated Linoleic Acid (CLA), Corosolic Acid, Creatine, Dehydroepiandrosterone (DHEA), Dichlorophen, Diindolymethane (DIM), Dimethyglycine (DMG), Dimercapto Succinic Acid (DMSA), Ebselen, Ellagic Acid, Enzymes, Fisetin, Formonetin, Glucaric Acid (Glucarate), Glucosamine (HCl or Sulfate), Glucosamine (N-Acetyl), Glutathione (Reduced), Hesperidine, Hydroxy-3-Methylbutyric Acid (HMB), 5-Hydroxytryptophan (L-5-HTP), Indole-3-Carbinol, Inositol, Isothiocyanates, Linolenic Acid-Gamma (GLA), Lipoic Acid (alpha), Melatonin, Methylsulfonylmethane (MSM), Minerals, Naringin, Pancreatin, Para-aminobenzoic Acid (PABA), Paraben (methyl or propyl), Phenolics, Phosphatidylcholine (Lecithin), Phosphatidylserine, Phospholipids, Phytosterols, Pregersterone, Pregnenolone, Quercetin, Resveratrol, D-Ribose, Rutin, S-adenosylmethionine (SAM-e), Salicylic Acid, Sulforaphane, Tartaric Acid, Taxifolin, Tetrahydropalmatine, Thephyline, Theobromine, Tigogenin, Troxerutin, Tryptophan, Tocotrienol (alph, beta & gamma), Vitamins, Zeaxanthin, Gingo Biloba, Ginger, Cat's Claw, Hypericum, Aloe Vera, Evening Primrose, Garlic, Capsicum, Dong Quai, Ginseng, Feverview, Fenugreek, Echinacea, Green Tea, Marshmallow, Saw Palmetto, Tea Tree Oil, Payllium, Kava-Kava, Licorice Root, Manonia Aquifolium, Hawthorne, Hohimbr, Tumeric, Witch Hazel, Valerian, Mistletoe, Bilberry, Bee Pollen, Peppermint Oil, Beta-Carotene, Genistein, Lutein, Lycopene, the Polyphenols (bioflavonoids), and the like.
In some embodiments, a nutraceutical may include microbes (i.e., probiotics). Examples of such microbes include, but are not limited to, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus casei, Bifidobacterium bifidum, Bifidobacterium longum, Saccharomyces boulardii, Saccharomyces cerevisiae, and the like (i.e., Samuel and Gordon, A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism, PNAS, 103(26):10011-10016 (2006)). In some embodiments, a nutraceutical may include non-living microbes. For example, non-living Saccharomyces cerevisiae may be used as a source of vitamin B12. In some embodiments, recombinant microbes may be utilized as nutraceuticals. For example, in some embodiments, microbes may be genetically modified to produce, or overexpress, one or more nutraceuticals.
The system 100 can include one or more display units 130. In some embodiments, one or more display units 130 can be used to indicate one or more nutraceuticals in response to input related to one or more parameters related to one or more individuals. In some embodiments, one or more display units 130 can be used to indicate one or more dosages of one or more nutraceuticals in response to input related to one or more parameters related to one or more individuals. In some embodiments, one or more display units 130 may display one or more dosages of one or more nutraceuticals in human-readable format. In some embodiments, one or more display units 130 may display one or more dosages of one or more nutraceuticals in machine-readable format. In some embodiments, one or more display units 130 can be included within system 100 through use of a hardwired connection. In some embodiments, one or more display units 130 can be included within system 100 through use of a wireless connection. In some embodiments, one or more display units 130 can be included within system 100 through use of a hardwired and a wireless connection.
Dosages may be expressed in numerous ways. In some embodiments, a dosage may be expressed as an absolute quantity (i.e., 500 milligrams of a nutraceutical). In other embodiments, a dosage may be expressed in accordance with the body weight of an individual (i.e., 10 milligram nutraceutical agent 118 per kilogram body weight). In some embodiments, a dosage may be expressed as a range of quantities (i.e., 10 milligrams to 100 milligrams of a nutraceutical). In some embodiments, a dosage may be an amount of a nutraceutical that produces a desired response when administered to a specific individual. For example, a dosage of melatonin may be the amount of melatonin that induces sleep in a specific individual. The dosage of a nutraceutical may vary according to numerous considerations that include, but are not limited to, the route of administration, the age of the individual, the size of the individual, the metabolic characteristics of the individual, the condition of the individual, and the like. In some embodiments, the dosage of a nutraceutical may be determined that produces a measurable effect, such as a physical effect, a psychological effect, a physiological effect, and the like. Accordingly, in some embodiments, a dosage may be expressed as an amount of a nutraceutical that produces a mental response in an individual. For example, in some embodiments, a dosage may be the amount of a nutraceutical that produces a sensation of well-being when administered to an individual. In other embodiments, a dosage may be the amount of a nutraceutical that elevates the mood of an individual to whom the nutraceutical is to be administered. Numerous additional criteria may be used to determine the dosage of a nutraceutical for administration to an individual.
In some embodiments, one or more display units 130 can display one or more dosages of one or more nutraceuticals and one or more formulations of the one or more nutraceuticals. For example, in some embodiments, one or more display units 130 may indicate a formulation and dosage of chromium. Presently, the most widely available chromium supplements are chromium salts such as chromium polynicotinate, chromium picolinate, and various chromium/amino acid chelates. Such formulations help increase the absorption and availability of chromium when compared to isolated chromium salts such as chromium chloride. The estimated safe and adequate daily dietary intake of chromium is 50-200 micrograms. Natural forms of supplemental chromium, such as chromium-rich yeast, may be absorbed somewhat more efficiently than inorganic forms of chromium, such as chromium chloride, found in some supplements. One ounce of brewer's yeast provides approximately 100-200 micrograms of chromium. Accordingly, in some embodiments, one or more display units 130 may display a dosage of chromium and a corresponding formulation of the chromium. In another embodiment, one or more display units 130 may display a dosage of vitamin A. For vitamin A deficiency syndromes, vitamin A may be orally supplemented at a dosage of 600 micrograms for children aged 3 years or younger, 900 micrograms for children aged 4-8 years, 1700 micrograms for children aged 9-13 years, 2800 micrograms for persons aged 14-18 years, and 3000 micrograms for all adults. Therapeutic doses for severe disease include 60,000 micrograms, which has been shown to reduce child mortality rates by 35-70%. One or more display units 130 may indicate dosages for numerous types of nutraceuticals that are formulated in numerous ways.
The system 100 can include one or more transmitting units 140. In some embodiments, one or more transmitting units 140 can be used to transmit one or more signals in response to input related to one or more individuals. In some embodiments, one or more transmitting units 140 can be used to transmit one or more levels of one or more metabolic indicators related to an individual. In some embodiments, one or more transmitting units 140 can be used to transmit one or more levels of one or more metabolic activities related to an individual. In some embodiments, one or more transmitting units 140 can be used to transmit input related to nutraceutical usage by one or more individuals. In some embodiments, one or more transmitting units 140 can be used to transmit input related to pharmaceutical usage by an individual. In some embodiments, one or more transmitting units 140 can be used to transmit input related to one or more parameters associated with one or more specified goals of an individual. In some embodiments, one or more transmitting units 140 can be used to transmit input related to selection of one or more nutraceuticals. In some embodiments, one or more transmitting units 140 can be used to transmit input related to one or more nutraceuticals that stimulate one or more metabolic pathways related to an individual. In some embodiments, one or more transmitting units 140 can be used to transmit input related to one or more nutraceuticals that inhibit one or more metabolic pathways related to an individual. In some embodiments, one or more transmitting units 140 can be used to transmit input related to selection of at least one vitamin, mineral, enzyme, amino acid, homeopathic supplement, toxin, homeopathic substance, traditional remedy, herbal supplement, glandular supplement, or substantially any combination thereof. In some embodiments, one or more transmitting units 140 can be included within system 100 through use of a hardwired connection. In some embodiments, one or more transmitting units 140 can be included within system 100 through use of a wireless connection. In some embodiments, one or more transmitting units 140 can be included within system 100 through use of a hardwired and a wireless connection.
The system 100 may include one or more signals. Numerous types of signals may be transmitted. Examples of such signals include, but are not limited to, hardwired signals, wireless signals, infrared signals, optical signals, radiofrequency (RF) signals, audible signals, digital signals, analog signals, or substantially any combination thereof.
The system 100 may include one or more receiving units 150. In some embodiments, one or more receiving units 150 may receive one or more signals transmitted in response to intaking information related to one or more parameters related to one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals related to one or more metabolic parameters related to an individual. In some embodiments, one or more receiving units 150 may receive one or more signals related to nutraceutical usage of one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals related to pharmaceutical usage by one or more individuals. In some embodiments, one or more receiving units 150 may receive input related to one or more goals of an individual. In some embodiments, one or more receiving units 150 may receive input related to selection of one or more nutraceuticals. In some embodiments, one or more receiving units 150 may receive input related to selection of one or more nutraceuticals to increase one or more levels of one or more components associated with an individual. In some embodiments, one or more receiving units 150 may receive input related to selection of one or more nutraceuticals to decrease one or more levels of one or more components associated with an individual. In some embodiments, one or more receiving units 150 may receive input related to selection of one or more nutraceuticals that stimulate one or more metabolic pathways related to an individual. In some embodiments, one or more receiving units 150 may receive input related to selection of one or more nutraceuticals that inhibit one or more metabolic pathways related to an individual. In some embodiments, one or more receiving units 150 may receive input related to selection of at least one vitamin, mineral, enzyme, amino acid, homeopathic supplement, toxin, homeopathic substance, traditional remedy, herbal supplement, glandular supplement, or substantially any combination thereof.
Receiving units 150 may receive input included in numerous types of signals. Examples of such signals include, but are not limited to, hardwired signals, wireless signals, infrared signals, optical signals, radiofrequency (RF) signals, auditory signals, digital signals, analog signals, or substantially any combination thereof.
The system 100 may provide for user interaction. In some embodiments, a user 170 may interact with one or more accepting units 110, one or more computational units 120, one or more display units 130, one or more transmitting units 140, one or more receiving units 150, and/or substantially any combination thereof. The user 170 can interact through use of numerous user interfaces 160. For example, a user 170 may interact through use of hardwired methods, such as through use of a keyboard, use of wireless methods, use of the internet, and the like. In some embodiments, a user 170 is a health-care worker. Examples of such health-care workers include, but are not limited to, physicians, nurses, dieticians, pharmacists, and the like. In some embodiments, users 170 may include those persons who work in health-related fields, such as coaches, personal trainers, clerks at food supplement stores, clerks at grocery stores, and the like. In some embodiments, a user 170 is not human. In some embodiments, a user 170 may be an individual. In some embodiments, an individual may be afflicted with a diagnosed condition. For example, in some embodiments, an individual may be afflicted with depression, anemia, obesity, insomnia, lower hormone levels, and the like. In some embodiments, an individual may be afflicted with an undiagnosed condition. In some embodiments, such an undiagnosed condition may be an actual condition or a perceived condition.
FIG. 2 illustrates an operational flow representing examples of operations that are related to the performance of one or more methods related to one or more nutraceuticals. In FIG. 2 and in following figures that include various examples of operations used during performance of the method, discussion and explanation may be provided with respect to the above-described example of FIG. 1, and/or with respect to other examples and contexts. However, it should be understood that the operations may be executed in a number of other environments and contexts, and/or modified versions of FIG. 1. Also, although the various operations are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently.
After a start operation, the operational flow 200 includes an accepting operation 210 involving accepting input associated with nutraceutical usage by one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the accepting operation 210 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 210 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals.
The operational flow 200 includes an accepting operation 220 involving accepting input associated with one or more parameters related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, the accepting operation 220 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to substance use by the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to weight of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to body composition of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to mood of the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, the accepting operation 220 may include accepting input related to expression of one or more genes within the one or more individuals.
The operational flow 200 includes a processing operation 230 involving processing the input associated with the nutraceutical usage by the one or more individuals and the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 230 may include comparing the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 230 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 230 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals at two or more times. In some embodiments, the processing operation 230 may include determining one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the processing operation 230 may include determining one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 230 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 230 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to one or more changes in the one or more parameters related to the one or more individuals at two or more times.
The operational flow 200 may include a displaying operation 240 involving displaying results of the processing. In some embodiments, the displaying operation 240 may include displaying the results of the processing on one or more active displays. In some embodiments, the displaying operation 240 may include displaying the results of the processing on one or more passive displays. In some embodiments, the displaying operation 240 may include displaying the results of the processing in numeric format. In some embodiments, the displaying operation 240 may include displaying the results of the processing in graphical format. In some embodiments, the displaying operation 240 may include displaying the results of the processing in audio format. In some embodiments, the displaying operation 240 may include displaying a comparison of one individual with one or more other individuals. In some embodiments, the displaying operation 240 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the displaying operation 240 may include displaying one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, the displaying operation 240 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times and one or more changes in the parameters related to the one or more individuals at two or more times.
The operational flow 200 may include a comparing operation 250 involving comparing results of the processing of the one or more individuals with one or more substantially similar results obtained for one or more other individuals. In some embodiments, the comparing operation 250 may include comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at two or more different times to obtain one or more parameter comparisons;
-
- comparing one or more values related to the nutraceutical usage by the one or more individuals at two or more different times to obtain one or more nutraceutical comparisons;
comparing one or more parameter comparisons to the one or more nutraceutical comparisons to obtain one or more parameter-parameter/nutraceutical-nutraceutical comparisons; and
-
- comparing the one or more parameter-parameter/nutraceutical-nutraceutical comparisons to the one or more substantially similar results obtained for the one or more other individuals. In some embodiments, the comparing operation 250 may include:
comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at a first time and one or more values related to the nutraceutical usage by the one or more individuals at the first time to obtain one or more parameter-nutraceutical comparisons;
comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at a second time and one or more values related to the nutraceutical usage by the one or more individuals at the second time to obtain one or more different parameter-nutraceutical comparisons;
comparing one or more parameter-nutraceutical comparisons to the one or more different parameter-nutraceutical comparisons to obtain one or more parameter-nutraceutical/different parameter-nutraceutical comparisons; and
comparing the one or more parameter-nutraceutical/different parameter-nutraceutical comparisons to the one or more substantially similar results obtained for the one or more other individuals.
The operational flow 200 may include a displaying operation 260 involving displaying results of the comparing. In some embodiments the displaying operation 260 may include displaying the results of the comparing on one or more active displays. In some embodiments, the displaying operation 260 may include displaying the results of the comparing on one or more passive displays. In some embodiments, the displaying operation 260 may include displaying the results of the comparing in numeric format. In some embodiments, the displaying operation 260 may include displaying the results of the comparing in graphical format. In some embodiments, the displaying operation 260 may include displaying the results of the comparing in audio format
FIG. 3 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 3 illustrates example embodiments where the accepting operation 210 may include at least one additional operation. Additional operations may include an operation 302, an operation 304, an operation 306, and/or an operation 308.
At operation 302, the accepting operation 210 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at one time.
At operation 304, the accepting operation 210 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at the same time. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at different times. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals over a series of time points. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations that are expressed as an administered dosage. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are expressed as a systemic concentration of the one or more nutraceuticals within one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are excreted by one or more individuals.
At operation 306, the accepting operation 210 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more identities of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more nutraceuticals may be identified by brand name. In some embodiments, one or more nutraceuticals may be identified by chemical name. In some embodiments, one or more nutraceuticals may be identified by popular name.
At operation 308, the accepting operation 210 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated one or more formulations of one or more nutraceuticals used by the one or more individuals. Examples of such formulations include, but are not limited to, formulations that may be administered orally, transdermally, rectally, vagin*lly, peritoneally, nasally, and the like. In some embodiments, such formulations may include one or more components. For example, in some embodiments, a formulation may include numerous vitamins, minerals, and the like.
FIG. 4 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 4 illustrates example embodiments where the accepting operation 210 may include at least one additional operation. Additional operations may include an operation 402, an operation 404, and/or an operation 406.
At operation 402, the accepting operation 210 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more times of administration of one or more nutraceuticals used by one or more individuals. For example, in some embodiments, one or more accepting units 110 may accept input associated with multiple administrations of one or more nutraceuticals at multiple times. Accordingly, such input may be used to prepare a presentation showing nutraceutical administration relative to time. In some embodiments, additional information may be combined with times of nutraceutical administration. For example, in some embodiments, time of administration may be combined with the identity of one or more nutraceuticals, the concentration of one or more nutraceuticals, the formulation of one or more nutraceuticals, the route of administration of one or more nutraceuticals, parameters associated with one or more individuals, or substantially any combination thereof.
At operation 404, the accepting operation 210 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more methods of administration of one or more nutraceuticals used by one or more individuals. Numerous methods may be used to administer one or more nutraceuticals to one or more individuals. Examples of such methods include, but are not limited to, oral administration, parenteral administration, transdermal administration, nasal administration, sublingual administration, vagin*l administration, rectal administration, and the like.
At operation 406, the accepting operation 210 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by one or more individuals. One or more accepting units 110 may accept numerous types of input related to pharmaceuticals. Examples of such input include, but are not limited to, route of administration, time of administration, identity of one or more pharmaceuticals, concentration of one or more pharmaceuticals, interactions of one or more pharmaceuticals with other pharmaceuticals and/or nutraceuticals, mechanism of action utilized by one or more pharmaceuticals, and the like.
FIG. 5 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 5 illustrates example embodiments where the accepting operation 220 may include at least one additional operation. Additional operations may include an operation 502, an operation 504, an operation 506, an operation 508, an operation 510, an operation 512, and/or an operation 514.
At operation 502, the accepting operation 220 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with the identity of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the dosage of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with contraindications of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with allergies associated with one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the duration with which one or more pharmaceuticals are administered. Accordingly, input may include numerous types of information associated with one or more pharmaceuticals.
At operation 504, the accepting operation 220 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with one or more parameters related to one or more individuals that are determined at two or more times. One or more accepting units 110 may accept numerous parameters related to one or more individuals. Examples of such parameters include, but are not limited to, physical parameters (e.g., height, weight, age, body composition, blood pressure, heart rate), mental parameters (e.g., depression, happiness, love, hate, loneliness, hopelessness, joy, acquity, memory, alertness), task related parameters (e.g., physical activity, presentation preparation, work related activity), environment related parameters (e.g., travel, allergens, pathogens), goal related parameters (e.g., lower blood pressure, weight loss, sleep acquisition, sleep avoidance, weight gain, muscle gain, fat loss), and the like. In some embodiments, one or more accepting units 110 may accept input at numerous different times. For example, in some embodiments, one or more accepting units 110 may accept physical parameters, such as an individual's weight or body mass index, at numerous time points. Accordingly, such input may be utilized to track changes in one or more parameters over time.
At operation 506, the accepting operation 220 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more physical parameters related to one or more individuals. One or more accepting units 110 may accept numerous physical parameters. Examples of such physical parameters may include, but are not limited to, height, weight, age, health, disease, physical state, injury, dental health, health history, family health history, and the like.
At operation 508, the accepting operation 220 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more mental parameters related to one or more individuals. One or more accepting units 110 may accept numerous mental parameters. Examples of such mental parameters may include, but are not limited to, mood (e.g., happiness, sadness, elation, depression, love, hate, loneliness, hopelessness), mental health (e.g., bipolar disorder, schizophrenia, multiple personality disorder, obsessive compulsive disorder, Alzheimer's disease), mental health history, family mental health history, mental function (e.g., alertness, acquity), and the like.
At operation 510, the accepting operation 220 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more goals of one or more individuals. One or more accepting units 110 may accept numerous goal related parameters. Examples of such goal related parameters may include, but are not limited to, athletic performance (e.g., weight gain, weight loss, muscle gain, fat loss, decreased body mass index, endurance, strength), mental performance (e.g., alertness, memory, acuity), and the like.
At operation 512, the accepting operation 220 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the travel plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the work plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the exercise plans of one or more individuals. Accordingly, one or more accepting units 110 may accept input that includes numerous types of information related to the plans of one or more individuals.
At operation 514, the accepting operation 220 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more metabolic activities related to one or more individuals. One or more accepting units 110 may accept input related to numerous types of metabolic activity. Examples of input related to metabolic activities include, but are not limited to, respiration rate, enzyme activity, oxygen consumption, heart rate, digestion, fatty acid-oxidation, hormone activity, vasodilation, vasoconstriction, pH, carbon dioxide concentration (e.g., blood, expired), oxygen concentrations (e.g., blood, expired), catabolic reactions, anabolic reactions, lipid metabolism, sugar metabolism, and the like.
FIG. 6 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 6 illustrates example embodiments where the accepting operation 220 may include at least one additional operation. Additional operations may include an operation 602, an operation 604, an operation 606, an operation 608, and/or an operation 610.
At operation 602, the accepting operation 220 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to sleep characteristics related to one or more individuals. In some embodiments, one or more input units may accept input related to the number of hours that one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to times when one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to the sleep schedules of one or more individuals. In some embodiments, one or more input units may accept input related to the quality of sleep obtained by one or more individuals. In some embodiments, one or more input units may accept input related to alertness felt by one or more individuals. In some embodiments, one or more input units may accept input related to sleep characteristics. For example, such input may include information related to positive and/or negative sleep experience, tiredness, restlessness, insomnia, alertness, feelings of tiredness, and the like. Accordingly, one or more input units may accept numerous types of input related to the sleep characteristics of one or more individuals.
At operation 604, the accepting operation 220 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to exercise characteristics related to one or more individuals. Input related to exercise characteristics may include, but is not limited to, type of exercise, duration of exercise, intensity of exercise, frequency of exercise, physiological parameters (e.g., pulse, blood pressure, oxygen consumption, carbon dioxide production) occurring during exercise, and the like.
At operation 606, the accepting operation 220 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to nutritional characteristics related to one or more individuals. Input related to nutritional characteristics may include, but is not limited to, types of food consumed (e.g., functional foods), types of beverages consumed, number of calories consumed, composition of consumed items (e.g., fat content, cholesterol content, oil content, caloric content), times of consumption, and the like.
At operation 608, the accepting operation 220 may include accepting input related to substance use by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to substance use by the one or more individuals. Examples of such input include, but are not limited to, alcohol use, tobacco use, nicotine intake, pharmaceutical use, illicit drug use, food supplement use, nutraceutical use, and the like.
At operation 610, the accepting operation 220 may include accepting input related to weight of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to weight of one or more individuals. One or more accepting units 110 may accept input related to present weight, past weight, future weight goals, or substantially any combination thereof.
FIG. 7 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 7 illustrates example embodiments where the accepting operation 220 may include at least one additional operation. Additional operations may include an operation 702, an operation 704, an operation 706, an operation 708, and/or an operation 710.
At operation 702, the accepting operation 220 may include accepting input related to body composition of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to body composition of one or more individuals. The results from numerous body composition tests may be accepted by one or more accepting units 110. Examples of such tests include, but are not limited to, skinfold measurement, body mass index, waist to hip ratio, hydrostatic weighing, bioelectric impedance, dual-energy X-ray absorptiometry, near infrared interactance, total body potassium, whole-body air-displacement plethysmography, magnetic resonance imaging, total body electrical conductivity, computed tomography, total body protein, or substantially any combination thereof.
At operation 704, the accepting operation 220 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to circulatory characteristics of one or more individuals. One or more accepting units 110 may accept input related to numerous types of circulatory characteristics. Examples of such circulatory characteristics include, but are not limited to, blood pressure, hypertension, heart rate, vasoelasticity, cholesterol levels, coronary heart disease, atherosclerosis, and the like.
At operation 706, the accepting operation 220 may include accepting input related to mood of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the mood of one or more individuals. Examples of various moods that may be input include, but are not limited to, happiness, sadness, loneliness, confusion, forgetfulness, joy, glee, euphoria, hopelessness, anger, rage, love, contempt, hate, frustration, and the like.
At operation 708, the accepting operation 220 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more proteins expressed within one or more individuals. For example, the enzyme 5,10-methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate, required for purine and thymidine syntheses, to 5-methyltetrahydrofolate, the primary circulatory form of folate necessary for methionine synthesis. A common mutation (677C→T) in 5,10-methylenetetrahydrofolate reductase reduces enzyme activity, leading to lower levels of 5-methyltetrahydrofolate. It has been determined that men having adequate folate levels who are hom*ozygous for the mutation (677T/677T) exhibit a three-fold decrease in risk of colorectal cancer when compared to men having adequate folate levels who are hom*ozygous normal (677C/677C) or heterozygous (677C/677T). However, the protection due to the mutation was absent in men with folate deficiency. In men with the hom*ozygous normal genotype who drink little or no alcohol as reference, men with the hom*ozygous mutation who drink little or no alcohol have an eight-fold decrease in risk and moderate drinkers exhibit a two-fold reduction in risk (Ma et al., Cancer Research, 57:1098-1102 (1997)). Polymorphisms in genes involved in folate metabolism have also been linked to maternal risk factors for Down Syndrome, neural tube defects, and oral clefts (Mills et al., Am. J. Med. Genet., 86:71-74 (1999); Wilson et al., Mol. Genet. Metab., 67:317-323 (1999); Hobbs et al., Am. J. Med. Genet., 67:623-630 (2000)). Accordingly, in some embodiments, information related to production of one or more proteins within an individual may be input. Such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. In some embodiments, one or more accepting units 110 may accept input related to the concentration of one or more proteins expressed within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more proteins expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous proteins and properties of proteins expressed within an individual.
At operation 710, the accepting operation 220 may include accepting input related to expression of one or more genes within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to expression of one or more genes within one or more individuals. In some embodiments, such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. For example, folate status and common variations in genes that code for folate dependent enzymes are linked to many types of cancer, vascular disease, birth defects, and complications of pregnancy. This arises because several molecular mechanisms that underpin the genomic machinery are sensitive to B vitamin status and, in particular, are responsive to the interaction between folate nutrition and folate dependent enzyme polymorphisms (Luco*ck, B M J, 328:211-214 (2004)). Accordingly, genetic information may be utilized during the selection of one or more nutraceuticals for administration to an individual. In another example, black tea polyphenols (e.g., a theaflavin-3-monogallate and theaflavin-3′-monogallate mixture) have been shown to suppress cyclooxygenase 2 (Cox-2) gene expression at both the messenger ribonucleic acid and protein level (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). Pharmacological inhibition of COX can provide relief from the symptoms of inflammation and pain. Accordingly, in some embodiments, input related to COX gene expression may be accepted by one or more accepting units 110 to follow nutraceutical mediated inhibition of COX expression. Black tea extracts also exhibit chemoprotective activity (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). In another example, a resveratrol analog (3,4,5,4′-tetrahydroxystilbene) has been shown to differentially induce pro-apoptotic p53/Bax gene expression and inhibit the growth of transformed cells but not their normal counterparts (Lu et al., Carcinogenesis, 22:321-328 (2001)). Accordingly, p53/Bax gene expression may be input to follow resveratrol analog mediated induction of gene expression. Numerous nutraceuticals mediate induction or inhibition of gene expression (e.g., Chen et al., Cancer Letters, 129:173-179 (1998); British J. Cancer, 92:513-521 (2005)). In another example, dietary omega-3 polyunsaturated fatty acids were shown to affect brain gene expression (Kitajka et al., PNAS, 101:10931-10936 (2004)). In some embodiments, one or more accepting units 110 may accept input related to the expression level of one or more genes within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more gene products expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous genes and the products of gene expression within an individual.
FIG. 8 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 8 illustrates example embodiments where the processing operation 230 may include at least one additional operation. Additional operations may include an operation 802, and/or an operation 804.
At operation 802, the processing operation 230 may include comparing the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may compare input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals. One or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one or more individuals. For example, in some embodiments, serotonin usage may be compared with the amount of sleep obtained by an individual. In some embodiments, caffeine usage may be compared with the amount of sleep obtained by an individual. In some embodiments, 5-hydroxytryptophan usage may be compared to the mood of an individual. In some embodiments, lithium usage may be compared to suppression of antipsychotic symptoms. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one individual. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to more than one individual. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one individual to one or more other individuals. For example, in some embodiments, nutraceutical usage and parameters associated with an individual may be compared to nutraceutical usage and parameters associated with one or more other individuals.
At operation 804, the processing operation 230 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may calculate one or more ratios of input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals. For example, in some embodiments, one or more computational units 120 may calculate the ratio of nutraceutical dosage (e.g., hoodia) to a determined parameter (e.g., weight loss) at one or more given times. In such instances, the individual ratios could be plotted over time to determine if there was a correlation of nutraceutical usage and the parameter (e.g., weight loss). In some embodiments, such ratios related to an individual could be compared to substantially similar ratios related to other individuals. Such a comparison would allow an individual to compare themselves to other individuals. Numerous different types of nutraceutical usages and parameters may be used during the calculation of ratios.
FIG. 9 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 9 illustrates example embodiments where the processing operation 230 may include at least one additional operation. Additional operations may include an operation 902, an operation 904, and/or an operation 906.
At operation 902, the processing operation 230 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may calculate one or more ratios of input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals at two or more times. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to determine if nutraceutical usage affects the one or more parameters. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to titrate the dosage of the one or more nutraceuticals relative to one or more parameters. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to determine if nutraceutical usage affects the one or more parameters. In some embodiments, one or more ratios related to one individual may be compared to substantially similar ratios related to one or more other individuals.
At operation 904, the processing operation 230 may include determining one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may determine one or more changes in nutraceutical usage by one or more individuals at two or more times. For example, in some embodiments, an individual may change the dosage of one or more nutraceuticals. In some embodiments, an individual may change the identity of one or more nutraceuticals. In some embodiments, an individual may change the route of administration of one or more nutraceuticals. In some embodiments, an individual may change the time of administration of one or more nutraceuticals. Accordingly, in some embodiments, one or more computational units 120 may determine one or more changes in nutraceutical usage and correlate the change in nutraceutical usage with one or more changes in one or more parameters related to one or more individuals. For example, in some embodiments, changes in serotonin usage (e.g., dosage, time of administration) may be correlated with sleep acquisition by an individual. In some embodiments, changes in 5-hydroxytryptophan usage may be correlated to with the mood of an individual. Numerous changes in nutraceutical usage may be determined and correlated to one or more parameters related to an individual.
At operation 906, the processing operation 230 may include determining one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may determine one or more changes in one or more parameters related to one or more individuals. Examples of parameters that may change include, but are not limited to, physical parameters, mental parameters, physiological parameters, and the like. In some embodiments, changes in one or more parameters may be correlated to nutraceutical usage by an individual. In some embodiments, changes in one or more parameters may be correlated to changes in nutraceutical usage by an individual.
FIG. 10 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 10 illustrates example embodiments where the processing operation 230 may include at least one additional operation. Additional operations may include an operation 1002, and/or an operation 1004.
At operation 1002, the processing operation 230 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may compare one or more changes in nutraceutical usage by one or more individuals to one or more changes in one or more parameters related to the one or more individuals. Numerous changes in nutraceutical usage may be compared. Examples of such changes in nutraceutical usage include, but are not limited to, dosage, time of administration, route of administration, formulation, manufacturer, and the like. Numerous changes in parameters may be compared. Examples of such changes in parameters include, but are not limited to, mental parameters, physical parameters, social parameters, sleep parameters, and the like. In some embodiments, one or more changes in nutraceutical usage by an individual may be compared to changes in one or more parameters related to the individual. In some embodiments, one or more changes in nutraceutical usage by an individual may be compared to changes in one or more parameters related to one or more other individuals. For example, in some embodiments, an individual may determine how a change in their personal nutraceutical usage changes one or more parameters when compared to a substantially similar change by one or more other individuals. In some embodiments, one or more computational units 120 may compare the nutraceutical usage by an individual to one or more changes in one or more parameters related to the individual and also to substantially similar changes in one or more other individuals to suggest a course of nutraceutical usage for the individual. For example, in some embodiments, the computational unit 120 may suggest a higher dosage of one or more nutraceuticals for administration to an individual if it is determined that a higher dosage will produce an effect based on changes resulting in one or more other individuals. Numerous comparisons may be made by one or more computational units 120.
At operation 1004, the processing operation 230 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may compare one or more changes in nutraceutical usage by one or more individuals to one or more changes in one or more parameters related to one or more individuals at two or more times. Numerous changes in nutraceutical usage may be compared. Examples of such changes in nutraceutical usage include, but are not limited to, dosage, time of administration, route of administration, formulation, manufacturer, and the like. Numerous changes in parameters may be compared. Examples of such changes in parameters include, but are not limited to, mental parameters, physical parameters, social parameters, sleep parameters, and the like.
FIG. 11 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 11 illustrates example embodiments where the displaying operation 240 may include at least one additional operation. Additional operations may include an operation 1102, an operation 1104, an operation 1106, and/or an operation 1108.
At operation 1102, the displaying operation 240 may include displaying the results of the processing on one or more active displays. In some embodiments, one or more display units 130 may display results of processing on one or more active displays. Numerous active display units 130 are known and include, but are not limited to, quarter-video graphics array (QVGA), video graphics array (VGA), super video graphics array (SVGA), extended graphics array (XGA), wide extended graphics array (WXGA), super extended graphics array (SXGA), ultra extended graphics array (UXGA), wide super extended graphics array (WSXGA), wide ultra extended graphics array (WUXGA).
At operation 1104, the displaying operation 240 may include displaying the results of the processing on one or more passive displays. In some embodiments, one or more display units 130 may display results of processing on one or more passive displays. In some embodiments, one or display units 130 may include one or more liquid crystal displays (LCD). Methods to construct passive displays have been described (e.g., U.S. Pat. Nos. 4,807,967; 4,729,636, 4,436,378; 4,257,041; herein incorporated by reference).
At operation 1106, the displaying operation 240 may include displaying the results of the processing in numeric format. In some embodiments, one or more display units 130 may display results of processing in numeric format.
At operation 1108, the displaying operation 240 may include displaying the results of the processing in graphical format. In some embodiments, one or more display units 130 may display results of processing in graphical format. Numerous types of graphical formats may be used. Examples of such graphical formats include, but are not limited to, use of shapes, use of colors, use of symbols (e.g., smiley face, frowny face, thumbs up sign, thumbs down sign, histograms, bar graphs, pie charts, and the like).
FIG. 12 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 12 illustrates example embodiments where the displaying operation 240 may include at least one additional operation. Additional operations may include an operation 1202, an operation 1204, an operation 1206, an operation 1208, and/or an operation 1210.
At operation 1202, the displaying operation 240 may include displaying the results of the processing in audio format. In some embodiments, one or more display units 130 may display results of processing in audio format. In some embodiments, the results of processing may be presented in voice format. For example, in some embodiments, a voice may tell an individual to increase, decrease, or maintain one or more dosages of one or more nutraceuticals. In some embodiments, sounds may be used to indicate changes in nutraceutical usage and/or parameters related to an individual. In some embodiments, applause, cheering, and the like may be used to indicate a positive change. Examples of positive changes include, but are not limited to, weight loss, lowered blood pressure, lowered heart rate, and the like. In some embodiments, booing, hissing, nagging, and the like may be used to indicate a negative change. Examples of negative changes include, but are not limited to, weight gain, increased blood pressure, increased heart rate, and the like.
At operation 1204, the displaying operation 240 may include displaying a comparison of one individual with one or more other individuals. In some embodiments, one or more display units 130 may display a comparison of one individual with one or more other individuals. Numerous display formats may be used. In some embodiments, one or more runners may be depicted on a visual display as participating in a race such that an individual will be depicted according to their position in the race. For example, if an individual is leading a group in weight loss, they may be depicted as running in first place in a foot race. However, if the individual is behind a group in weight loss, they may be depicted as running in last place in a foot race. In some embodiments, individuals may be depicted as individual bars in a bar graph. In some embodiments, individuals may be depicted as slices of a pie chart. Accordingly, numerous formats may be used to display a comparison of an individual to one or more other individuals.
At operation 1206, the displaying operation 240 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in nutraceutical usage by one or more individuals at two or more times. For example, in some embodiments, one or more display units 130 may display changes in the dosage of one or more nutraceuticals relative to a starting dosage at two or more times. In some embodiments, one or more display units 130 may display changes in the formulation of one or more nutraceuticals relative to a starting formulation at two or more times. Numerous changes may be displayed.
At operation 1208, the displaying operation 240 may include displaying one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in one or more parameters related to one or more individuals at two or more times. For example, in some embodiments, one or more display units 130 may display changes in the weight of an individual at two or more times. Numerous changes may be displayed.
At operation 1210, the displaying operation 240 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times and one or more changes in the parameters related to the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in nutraceutical usage by one or more individuals at two or more times and one or more changes in parameters related to the one or more individuals at two or more times. Accordingly, changes in nutraceutical usage may be displayed relative to changes in parameters over time. In some embodiments, such a display may be used to titrate nutraceutical usage to achieve a desired result.
FIG. 13 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 13 illustrates example embodiments where the comparing operation 250 may include at least one additional operation. Additional operations may include an operation 1302.
At operation 1302, the comparing operation 250 may include:
comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at two or more different times to obtain one or more parameter comparisons;
-
- comparing one or more values related to the nutraceutical usage by the one or more individuals at two or more different times to obtain one or more nutraceutical comparisons;
comparing one or more parameter comparisons to the one or more nutraceutical comparisons to obtain one or more parameter-parameter/nutraceutical-nutraceutical comparisons; and
comparing the one or more parameter-parameter/nutraceutical-nutraceutical comparisons to the one or more substantially similar results obtained for the one or more other individuals.
In some embodiments, one or more computational units 120 may compare one or more values related to one or more parameters associated with one or more individuals that are determined at two or more different times to obtain one or more parameter comparisons; compare one or more values related to nutraceutical usage by the one or more individuals at two or more different times to obtain one or more nutraceutical comparisons; compare the one or more parameter comparisons to the one or more nutraceutical comparisons to obtain one or more parameter-parameter/nutraceutical-nutraceutical comparisons; and compare the one or more parameter-parameter/nutraceutical-nutraceutical comparisons to one or more substantially similar results obtained for one or more other individuals. Numerous values for nutraceutical usage and parameters associated with one or more individuals may be used.
FIG. 14 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 14 illustrates example embodiments where the comparing operation 250 may include at least one additional operation. Additional operations may include an operation 1402.
At operation 1402, the comparing operation 250 may include:
comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at a first time and one or more values related to the nutraceutical usage by the one or more individuals at the first time to obtain one or more parameter-nutraceutical comparisons;
comparing one or more values related to the one or more parameters associated with the one or more individuals that are determined at a second time and one or more values related to the nutraceutical usage by the one or more individuals at the second time to obtain one or more different parameter-nutraceutical comparisons;
comparing one or more parameter-nutraceutical comparisons to the one or more different parameter-nutraceutical comparisons to obtain one or more parameter-nutraceutical/different parameter-nutraceutical comparisons; and comparing the one or more parameter-nutraceutical/different parameter-nutraceutical comparisons to the one or more substantially similar results obtained for the one or more other individuals.
In some embodiments, one or more computational units 120 may compare one or more values related to one or more parameters associated with one or more individuals that are determined at a first time and one or more values related to the nutraceutical usage by the one or more individuals at the first time to obtain one or more parameter-nutraceutical comparisons; compare one or more values related to one or more parameters associated with the one or more individuals that are determined at a second time and one or more values related to the nutraceutical usage by the one or more individuals at the second time to obtain one or more different parameter-nutraceutical comparisons; compare one or more parameter-nutraceutical comparisons to the one or more different parameter-nutraceutical comparisons to obtain one or more parameter-nutraceutical/different parameter-nutraceutical comparisons; and compare the one or more parameter-nutraceutical/different parameter-nutraceutical comparisons to the one or more substantially similar results obtained for the one or more other individuals. Numerous values for nutraceutical usage and parameters associated with one or more individuals may be used.
FIG. 15 illustrates alternative embodiments of the example operational flow 200 of FIG. 2. FIG. 15 illustrates example embodiments where the displaying operation 260 may include at least one additional operation. Additional operations may include an operation 1502, an operation 1504, an operation 1506, an operation 1508, and/or an operation 1510.
At operation 1502, the displaying operation 260 may include displaying the results of the comparing on one or more active displays. In some embodiments, one or more display units 130 may display results of processing on one or more active displays. Numerous active display units 130 are known and include, but are not limited to, quarter-video graphics array (QVGA), video graphics array (VGA), super video graphics array (SVGA), extended graphics array (XGA), wide extended graphics array (WXGA), super extended graphics array (SXGA), ultra extended graphics array (UXGA), wide super extended graphics array (WSXGA), wide ultra extended graphics array (WUXGA).
At operation 1504, the displaying operation 260 may include displaying the results of the comparing on one or more passive displays. In some embodiments, one or more display units 130 may display results of processing on one or more passive displays. In some embodiments, one or display units 130 may include one or more liquid crystal displays (LCD). Methods to construct passive displays have been described (e.g., U.S. Pat. Nos. 4,807,967; 4,729,636; 4,436,378; 4,257,041; herein incorporated by reference).
At operation 1506, the displaying operation 260 may include displaying the results of the comparing in numeric format. In some embodiments, one or more display units 130 may display results of processing in numeric format.
At operation 1508, the displaying operation 260 may include displaying the results of the comparing in graphical format. In some embodiments, one or more display units 130 may display results of processing in graphical format. Numerous types of graphical formats may be used. Examples of such graphical formats include, but are not limited to, use of shapes, use of colors, use of symbols (e.g., smiley face, frowny face, thumbs up sign, thumbs down sign, histograms, bar graphs, pie charts, and the like).
At operation 1510, the displaying operation 260 may include displaying the results of the comparing in audio format. In some embodiments, one or more display units 130 may display results of processing in audio format. In some embodiments, the results of processing may be presented in voice format. For example, in some embodiments, a voice may tell an individual to increase, decrease, or maintain one or more dosages of one or more nutraceuticals. In some embodiments, sounds may be used to indicate changes in nutraceutical usage and/or parameters related to an individual. In some embodiments, applause, cheering, and the like may be used to indicate a positive change. Examples of positive changes include, but are not limited to, weight loss, lowered blood pressure, lowered heart rate, and the like. In some embodiments, booing, hissing, nagging, and the like may be used to indicate a negative change. Examples of negative changes include, but are not limited to, weight gain, increased blood pressure, increased heart rate, and the like.
FIG. 16 illustrates an operational flow 1600 representing examples of operations that are related to the performance of one or more method related to one or more nutraceuticals. In FIG. 16 and in following figures that include various examples of operations used during performance of the method, discussion and explanation may be provided with respect to the above-described example of FIG. 1, and/or with respect to other examples and contexts. However, it should be understood that the operations may be executed in a number of other environments and contexts, and/or modified versions of FIG. 1. Also, although the various operations are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently.
After a start operation, the operational flow 1600 includes an accepting operation 1610 involving accepting input associated with nutraceutical usage by one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 1610 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals.
After a start operation, the operational flow 1600 includes an accepting operation 1620 involving accepting input associated with one or more parameters related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, the accepting operation 1620 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to substance use by the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to weight of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to body composition of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to mood of the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, the accepting operation 1620 may include accepting input related to expression of one or more genes within the one or more individuals.
After a start operation, the operational flow 1600 includes a transmitting operation 1630 involving transmitting one or more signals that include information related to the input associated with the nutraceutical usage by the one or more individuals and to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, the transmitting operation 1630 may include transmitting the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals.
FIG. 17 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 17 illustrates example embodiments where the accepting operation 1610 may include at least one additional operation. Additional operations may include an operation 1702, an operation 1704, an operation 1706, and/or an operation 1708.
At operation 1702, the accepting operation 1610 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at one time.
At operation 1704, the accepting operation 1610 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at the same time. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at different times. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals over a series of time points. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations that are expressed as an administered dosage. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are expressed as a systemic concentration of the one or more nutraceuticals within one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are excreted by one or more individuals.
At operation 1706, the accepting operation 1610 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more identities of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more nutraceuticals may be identified by brand name. In some embodiments, one or more nutraceuticals may be identified by chemical name. In some embodiments, one or more nutraceuticals may be identified by popular name.
At operation 1708, the accepting operation 1610 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated one or more formulations of one or more nutraceuticals used by the one or more individuals. Examples of such formulations include, but are not limited to, formulations that may be administered orally, transdermally, rectally, vagin*lly, peritoneally, nasally, and the like. In some embodiments, such formulations may include one or more components. For example, in some embodiments, a formulation may include numerous vitamins, minerals, and the like.
FIG. 18 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 18 illustrates example embodiments where the accepting operation 1610 may include at least one additional operation. Additional operations may include an operation 1802, an operation 1804, and/or an operation 1806.
At operation 1802, the accepting operation 1610 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more times of administration of one or more nutraceuticals used by one or more individuals. For example, in some embodiments, one or more accepting units 110 may accept input associated with multiple administrations of one or more nutraceuticals at multiple times. Accordingly, such input may be used to prepare a presentation showing nutraceutical administration relative to time. In some embodiments, additional information may be combined with times of nutraceutical administration. For example, in some embodiments, time of administration may be combined with the identity of one or more nutraceuticals, the concentration of one or more nutraceuticals, the formulation of one or more nutraceuticals, the route of administration of one or more nutraceuticals, parameters associated with one or more individuals, or substantially any combination thereof.
At operation 1804, the accepting operation 1610 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more methods of administration of one or more nutraceuticals used by one or more individuals. Numerous methods may be used to administer one or more nutraceuticals to one or more individuals. Examples of such methods include, but are not limited to, oral administration, parenteral administration, transdermal administration, nasal administration, sublingual administration, vagin*l administration, rectal administration, and the like.
At operation 1806, the accepting operation 1610 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by one or more individuals. One or more accepting units 110 may accept numerous types of input related to pharmaceuticals. Examples of such input include, but are not limited to, route of administration, time of administration, identity of one or more pharmaceuticals, concentration of one or more pharmaceuticals, interactions of one or more pharmaceuticals with other pharmaceuticals and/or nutraceuticals, mechanism of action utilized by one or more pharmaceuticals, and the like.
FIG. 19 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 19 illustrates example embodiments where the accepting operation 1620 may include at least one additional operation. Additional operations may include an operation 1902, an operation 1904, an operation 1906, an operation 1908, an operation 1910, an operation 1912, and/or an operation 1914.
At operation 1902, the accepting operation 1620 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with the identity of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the dosage of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with contraindications of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with allergies associated with one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the duration with which one or more pharmaceuticals are administered. Accordingly, input may include numerous types of information associated with one or more pharmaceuticals.
At operation 1904, the accepting operation 1620 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with one or more parameters related to one or more individuals that are determined at two or more times. One or more accepting units 110 may accept numerous parameters related to one or more individuals. Examples of such parameters include, but are not limited to, physical parameters (e.g., height, weight, age, body composition, blood pressure, heart rate), mental parameters (e.g., depression, happiness, love, hate, loneliness, hopelessness, joy, acquity, memory, alertness), task related parameters (e.g., physical activity, presentation preparation, work related activity), environment related parameters (e.g., travel, allergens, pathogens), goal related parameters (e.g., lower blood pressure, weight loss, sleep acquisition, sleep avoidance, weight gain, muscle gain, fat loss), and the like. In some embodiments, one or more accepting units 110 may accept input at numerous different times. For example, in some embodiments, one or more accepting units 110 may accept physical parameters, such as an individual's weight or body mass index, at numerous time points. Accordingly, such input may be utilized to track changes in one or more parameters over time.
At operation 1906, the accepting operation 1620 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more physical parameters related to one or more individuals. One or more accepting units 110 may accept numerous physical parameters. Examples of such physical parameters may include, but are not limited to, height, weight, age, health, disease, physical state, injury, dental health, health history, family health history, and the like.
At operation 1908, the accepting operation 1620 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more mental parameters related to one or more individuals. One or more accepting units 110 may accept numerous mental parameters. Examples of such mental parameters may include, but are not limited to, mood (e.g., happiness, sadness, elation, depression, love, hate, loneliness, hopelessness), mental health (e.g., bipolar disorder, schizophrenia, multiple personality disorder, obsessive compulsive disorder, Alzheimer's disease), mental health history, family mental health history, mental function (e.g., alertness, acquity), and the like.
At operation 1910, the accepting operation 1620 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more goals of one or more individuals. One or more accepting units 110 may accept numerous goal related parameters. Examples of such goal related parameters may include, but are not limited to, athletic performance (e.g., weight gain, weight loss, muscle gain, fat loss, decreased body mass index, endurance, strength), mental performance (e.g., alertness, memory, acuity), and the like.
At operation 1912, the accepting operation 1620 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the travel plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the work plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the exercise plans of one or more individuals. Accordingly, one or more accepting units 110 may accept input that includes numerous types of information related to the plans of one or more individuals.
At operation 1914, the accepting operation 1620 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more metabolic activities related to one or more individuals. One or more accepting units 110 may accept input related to numerous types of metabolic activity. Examples of input related to metabolic activities include, but are not limited to, respiration rate, enzyme activity, oxygen consumption, heart rate, digestion, fatty acid-oxidation, hormone activity, vasodilation, vasoconstriction, pH, carbon dioxide concentration (e.g., blood, expired), oxygen concentrations (e.g., blood, expired), catabolic reactions, anabolic reactions, lipid metabolism, sugar metabolism, and the like.
FIG. 20 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 20 illustrates example embodiments where the accepting operation 1620 may include at least one additional operation. Additional operations may include an operation 2002, an operation 2004, an operation 2006, an operation 2008, and/or an operation 2010.
At operation 2002, the accepting operation 1620 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to sleep characteristics related to one or more individuals. In some embodiments, one or more input units may accept input related to the number of hours that one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to times when one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to the sleep schedules of one or more individuals. In some embodiments, one or more input units may accept input related to the quality of sleep obtained by one or more individuals. In some embodiments, one or more input units may accept input related to alertness felt by one or more individuals. In some embodiments, one or more input units may accept input related to sleep characteristics. For example, such input may include information related to positive and/or negative sleep experience, tiredness, restlessness, insomnia, alertness, feelings of tiredness, and the like. Accordingly, one or more input units may accept numerous types of input related to the sleep characteristics of one or more individuals.
At operation 2004, the accepting operation 1620 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to exercise characteristics related to one or more individuals. Input related to exercise characteristics may include, but is not limited to, type of exercise, duration of exercise, intensity of exercise, frequency of exercise, physiological parameters (e.g., pulse, blood pressure, oxygen consumption, carbon dioxide production) occurring during exercise, and the like.
At operation 2006, the accepting operation 1620 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to nutritional characteristics related to one or more individuals. Input related to nutritional characteristics may include, but is not limited to, types of food consumed (e.g., functional foods), types of beverages consumed, number of calories consumed, composition of consumed items (e.g., fat content, cholesterol content, oil content, caloric content), times of consumption, and the like.
At operation 2008, the accepting operation 1620 may include accepting input related to substance use by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to substance use by the one or more individuals. Examples of such input include, but are not limited to, alcohol use, tobacco use, nicotine intake, pharmaceutical use, illicit drug use, food supplement use, nutraceutical use, and the like.
At operation 2010, the accepting operation 1620 may include accepting input related to weight of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to weight of one or more individuals. One or more accepting units 110 may accept input related to present weight, past weight, future weight goals, or substantially any combination thereof.
FIG. 21 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 21 illustrates example embodiments where the accepting operation 1620 may include at least one additional operation. Additional operations may include an operation 2102, an operation 2104, an operation 2106, an operation 2108, and/or an operation 2110.
At operation 2102, the accepting operation 1620 may include accepting input related to body composition of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to body composition of one or more individuals. The results from numerous body composition tests may be accepted by one or more accepting units 110. Examples of such tests include, but are not limited to, skinfold measurement, body mass index, waist to hip ratio, hydrostatic weighing, bioelectric impedance, dual-energy X-ray absorptiometry, near infrared interactance, total body potassium, whole-body air-displacement plethysmography, magnetic resonance imaging, total body electrical conductivity, computed tomography, total body protein, or substantially any combination thereof.
At operation 2104, the accepting operation 1620 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to circulatory characteristics of one or more individuals. One or more accepting units 110 may accept input related to numerous types of circulatory characteristics. Examples of such circulatory characteristics include, but are not limited to, blood pressure, hypertension, heart rate, vasoelasticity, cholesterol levels, coronary heart disease, atherosclerosis, and the like.
At operation 2106, the accepting operation 1620 may include accepting input related to mood of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the mood of one or more individuals. Examples of various moods that may be input include, but are not limited to, happiness, sadness, loneliness, confusion, forgetfulness, joy, glee, euphoria, hopelessness, anger, rage, love, contempt, hate, frustration, and the like.
At operation 2108, the accepting operation 1620 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more proteins expressed within one or more individuals. For example, the enzyme 5,10-methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate, required for purine and thymidine syntheses, to 5-methyltetrahydrofolate, the primary circulatory form of folate necessary for methionine synthesis. A common mutation (677C→T) in 5,10-methylenetetrahydrofolate reductase reduces enzyme activity, leading to lower levels of 5-methyltetrahydrofolate. It has been determined that men having adequate folate levels who are hom*ozygous for the mutation (677T/677T) exhibit a three-fold decrease in risk of colorectal cancer when compared to men having adequate folate levels who are hom*ozygous normal (677C/677C) or heterozygous (677C/677T). However, the protection due to the mutation was absent in men with folate deficiency. In men with the hom*ozygous normal genotype who drink little or no alcohol as reference, men with the hom*ozygous mutation who drink little or no alcohol have an eight-fold decrease in risk and moderate drinkers exhibit a two-fold reduction in risk (Ma et al., Cancer Research, 57:1098-1102 (1997)). Polymorphisms in genes involved in folate metabolism have also been linked to maternal risk factors for Down Syndrome, neural tube defects, and oral clefts (Mills et al., Am. J. Med. Genet., 86:71-74 (1999); Wilson et al., Mol. Genet. Metab., 67:317-323 (1999); Hobbs et al., Am. J. Med. Genet., 67:623-630 (2000)). Accordingly, in some embodiments, information related to production of one or more proteins within an individual may be input. Such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. In some embodiments, one or more accepting units 110 may accept input related to the concentration of one or more proteins expressed within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more proteins expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous proteins and properties of proteins expressed within an individual.
At operation 2110, the accepting operation 1620 may include accepting input related to expression of one or more genes within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to expression of one or more genes within one or more individuals. In some embodiments, such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. For example, folate status and common variations in genes that code for folate dependent enzymes are linked to many types of cancer, vascular disease, birth defects, and complications of pregnancy. This arises because several molecular mechanisms that underpin the genomic machinery are sensitive to B vitamin status and, in particular, are responsive to the interaction between folate nutrition and folate dependent enzyme polymorphisms (Luco*ck, B M J, 328:211-214 (2004)). Accordingly, genetic information may be utilized during the selection of one or more nutraceuticals for administration to an individual. In another example, black tea polyphenols (e.g., a theaflavin-3-monogallate and theaflavin-3′-monogallate mixture) have been shown to suppress cyclooxygenase 2 (Cox-2) gene expression at both the messenger ribonucleic acid and protein level (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). Pharmacological inhibition of COX can provide relief from the symptoms of inflammation and pain. Accordingly, in some embodiments, input related to COX gene expression may be accepted by one or more accepting units 110 to follow nutraceutical mediated inhibition of COX expression. Black tea extracts also exhibit chemoprotective activity (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). In another example, a resveratrol analog (3,4,5,4′-tetrahydroxystilbene) has been shown to differentially induce pro-apoptotic p53/Bax gene expression and inhibit the growth of transformed cells but not their normal counterparts (Lu et al., Carcinogenesis, 22:321-328 (2001)). Accordingly, p53/Bax gene expression may be input to follow resveratrol analog mediated induction of gene expression. Numerous nutraceuticals mediate induction or inhibition of gene expression (e.g., Chen et al., Cancer Letters, 129:173-179 (1998); British J. Cancer, 92:513-521 (2005)). In another example, dietary omega-3 polyunsaturated fatty acids were shown to affect brain gene expression (Kitajka et al., PNAS, 101:10931-10936 (2004)). In some embodiments, one or more accepting units 110 may accept input related to the expression level of one or more genes within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more gene products expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous genes and the products of gene expression within an individual.
FIG. 22 illustrates alternative embodiments of the example operational flow 1600 of FIG. 16. FIG. 22 illustrates example embodiments where the transmitting operation 1630 may include at least one additional operation. Additional operations may include an operation 2202, an operation 2204, an operation 2206, and/or an operation 2208.
At operation 2202, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with the identity of one or more nutraceuticals for administration to one or more individuals.
At operation 2204, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to one or more individuals.
At operation 2206, the transmitting operation 1630 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. Examples of health related recommendations may include, but are not limited to, recommendations associated with diet, sleep habits, substance use, weight, exercise, and the like.
At operation 2208, the transmitting operation 1630 may include transmitting the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with comparing information related to input associated with nutraceutical usage and one or more parameters related to one or more individuals to substantially similar information related to one or more different individuals.
FIG. 23 illustrates an operational flow 2300 representing examples of operations that are related to the performance of one or more methods related to one or more nutraceuticals. In FIG. 23 and in following figures that include various examples of operations used during performance of the method, discussion and explanation may be provided with respect to the above-described example of FIG. 1, and/or with respect to other examples and contexts. However, it should be understood that the operations may be executed in a number of other environments and contexts, and/or modified versions of FIG. 1. Also, although the various operations are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently.
After a start operation, the operational flow 2300 includes an accepting operation 2310 involving accepting input associated with nutraceutical usage by one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, the accepting operation 2310 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals.
After a start operation, the operational flow 2300 includes an accepting operation 2320 involving accepting input associated with one or more parameters related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, the accepting operation 2320 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to substance use by the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to weight of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to body composition of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to mood of the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, the accepting operation 2320 may include accepting input related to expression of one or more genes within the one or more individuals.
After a start operation, the operational flow 2300 includes a processing operation 2330 involving processing the input associated with the nutraceutical usage by the one or more individuals and the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 2330 may include comparing the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 2330 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 2330 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals at two or more times. In some embodiments, the processing operation 2330 may include determining one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the processing operation 2330 may include determining one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 2330 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to the one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, the processing operation 2330 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to the one or more changes in the one or more parameters related to the one or more individuals at two or more times.
After a start operation, the operational flow 2300 includes a transmitting operation 2340 involving transmitting one or more signals that include information related to results of the processing. In some embodiments, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, the transmitting operation 2340 may include transmitting the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals.
FIG. 24 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 24 illustrates example embodiments where the accepting operation 2310 may include at least one additional operation. Additional operations may include an operation 2402, an operation 2404, an operation 2406, and/or an operation 2408.
At operation 2402, the accepting operation 2310 may include accepting input associated with the nutraceutical usage by the one or more individuals at two or more times.
In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with nutraceutical usage by one or more individuals at one time.
At operation 2404, the accepting operation 2310 may include accepting input associated with one or more concentrations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at the same time. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals at different times. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals over a series of time points. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations that are expressed as an administered dosage. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are expressed as a systemic concentration of the one or more nutraceuticals within one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more concentrations of one or more nutraceuticals that are excreted by one or more individuals.
At operation 2406, the accepting operation 2310 may include accepting input associated with one or more identities of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more identities of one or more nutraceuticals used by one or more individuals. In some embodiments, one or more nutraceuticals may be identified by brand name. In some embodiments, one or more nutraceuticals may be identified by chemical name. In some embodiments, one or more nutraceuticals may be identified by popular name.
At operation 2408, the accepting operation 2310 may include accepting input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more formulations of one or more nutraceuticals used by the one or more individuals. Examples of such formulations include, but are not limited to, formulations that may be administered orally, transdermally, rectally, vagin*lly, peritoneally, nasally, and the like. In some embodiments, such formulations may include one or more components. For example, in some embodiments, a formulation may include numerous vitamins, minerals, and the like.
FIG. 25 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 25 illustrates example embodiments where the accepting operation 2310 may include at least one additional operation. Additional operations may include an operation 2502, an operation 2504, and/or an operation 2506.
At operation 2502, the accepting operation 2310 may include accepting input associated with one or more times of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more times of administration of one or more nutraceuticals used by one or more individuals. For example, in some embodiments, one or more accepting units 110 may accept input associated with multiple administrations of one or more nutraceuticals at multiple times. Accordingly, such input may be used to prepare a presentation showing nutraceutical administration relative to time. In some embodiments, additional information may be combined with times of nutraceutical administration. For example, in some embodiments, time of administration may be combined with the identity of one or more nutraceuticals, the concentration of one or more nutraceuticals, the formulation of one or more nutraceuticals, the route of administration of one or more nutraceuticals, parameters associated with one or more individuals, or substantially any combination thereof.
At operation 2504, the accepting operation 2310 may include accepting input associated with one or more methods of administration of one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more methods of administration of one or more nutraceuticals used by one or more individuals. Numerous methods may be used to administer one or more nutraceuticals to one or more individuals. Examples of such methods include, but are not limited to, oral administration, parenteral administration, transdermal administration, nasal administration, sublingual administration, vagin*l administration, rectal administration, and the like.
At operation 2506, the accepting operation 2310 may include accepting input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used in conjunction with one or more nutraceuticals used by one or more individuals. One or more accepting units 110 may accept numerous types of input related to pharmaceuticals. Examples of such input include, but are not limited to, route of administration, time of administration, identity of one or more pharmaceuticals, concentration of one or more pharmaceuticals, interactions of one or more pharmaceuticals with other pharmaceuticals and/or nutraceuticals, mechanism of action utilized by one or more pharmaceuticals, and the like.
FIG. 26 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 26 illustrates example embodiments where the accepting operation 2320 may include at least one additional operation. Additional operations may include an operation 2602, an operation 2604, an operation 2606, an operation 2608, an operation 2610, an operation 2612, and/or an operation 2614.
At operation 2602, the accepting operation 2320 may include accepting input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with one or more pharmaceuticals used by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input associated with the identity of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the dosage of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with contraindications of one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with allergies associated with one or more pharmaceuticals. In some embodiments, one or more accepting units 110 may accept input associated with the duration with which one or more pharmaceuticals are administered. Accordingly, input may include numerous types of information associated with one or more pharmaceuticals.
At operation 2604, the accepting operation 2320 may include accepting input associated with the one or more parameters related to the one or more individuals that are determined at two or more times. In some embodiments, one or more accepting units 110 may accept input associated with one or more parameters related to one or more individuals that are determined at two or more times. One or more accepting units 110 may accept numerous parameters related to one or more individuals. Examples of such parameters include, but are not limited to, physical parameters (e.g., height, weight, age, body composition, blood pressure, heart rate), mental parameters (e.g., depression, happiness, love, hate, loneliness, hopelessness, joy, acquity, memory, alertness), task related parameters (e.g., physical activity, presentation preparation, work related activity), environment related parameters (e.g., travel, allergens, pathogens), goal related parameters (e.g., lower blood pressure, weight loss, sleep acquisition, sleep avoidance, weight gain, muscle gain, fat loss), and the like. In some embodiments, one or more accepting units 110 may accept input at numerous different times. For example, in some embodiments, one or more accepting units 110 may accept physical parameters, such as an individual's weight or body mass index, at numerous time points. Accordingly, such input may be utilized to track changes in one or more parameters over time.
At operation 2606, the accepting operation 2320 may include accepting input related to one or more physical parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more physical parameters related to one or more individuals. One or more accepting units 110 may accept numerous physical parameters. Examples of such physical parameters may include, but are not limited to, height, weight, age, health, disease, physical state, injury, dental health, health history, family health history, and the like.
At operation 2608, the accepting operation 2320 may include accepting input related to one or more mental parameters related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more mental parameters related to one or more individuals. One or more accepting units 110 may accept numerous mental parameters. Examples of such mental parameters may include, but are not limited to, mood (e.g., happiness, sadness, elation, depression, love, hate, loneliness, hopelessness), mental health (e.g., bipolar disorder, schizophrenia, multiple personality disorder, obsessive compulsive disorder, Alzheimer's disease), mental health history, family mental health history, mental function (e.g., alertness, acquity), and the like.
At operation 2610, the accepting operation 2320 may include accepting input related to one or more goals of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more goals of one or more individuals. One or more accepting units 110 may accept numerous goal related parameters. Examples of such goal related parameters may include, but are not limited to, athletic performance (e.g., weight gain, weight loss, muscle gain, fat loss, decreased body mass index, endurance, strength), mental performance (e.g., alertness, memory, acuity), and the like.
At operation 2612, the accepting operation 2320 may include accepting input related to one or more plans of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the travel plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the work plans of one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the exercise plans of one or more individuals. Accordingly, one or more accepting units 110 may accept input that includes numerous types of information related to the plans of one or more individuals.
At operation 2614, the accepting operation 2320 may include accepting input related to one or more metabolic activities related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more metabolic activities related to one or more individuals. One or more accepting units 110 may accept input related to numerous types of metabolic activity. Examples of input related to metabolic activities include, but are not limited to, respiration rate, enzyme activity, oxygen consumption, heart rate, digestion, fatty acid-oxidation, hormone activity, vasodilation, vasoconstriction, pH, carbon dioxide concentration (e.g., blood, expired), oxygen concentrations (e.g., blood, expired), catabolic reactions, anabolic reactions, lipid metabolism, sugar metabolism, and the like.
FIG. 27 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 27 illustrates example embodiments where the accepting operation 2320 may include at least one additional operation. Additional operations may include an operation 2702, an operation 2704, an operation 2706, an operation 2708, and/or an operation 2710.
At operation 2702, the accepting operation 2320 may include accepting input related to sleep characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to sleep characteristics related to one or more individuals. In some embodiments, one or more input units may accept input related to the number of hours that one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to times when one or more individuals sleep during a time period. In some embodiments, one or more input units may accept input related to the sleep schedules of one or more individuals. In some embodiments, one or more input units may accept input related to the quality of sleep obtained by one or more individuals. In some embodiments, one or more input units may accept input related to alertness felt by one or more individuals. In some embodiments, one or more input units may accept input related to sleep characteristics. For example, such input may include information related to positive and/or negative sleep experience, tiredness, restlessness, insomnia, alertness, feelings of tiredness, and the like. Accordingly, one or more input units may accept numerous types of input related to the sleep characteristics of one or more individuals.
At operation 2704, the accepting operation 2320 may include accepting input related to exercise characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to exercise characteristics related to one or more individuals. Input related to exercise characteristics may include, but is not limited to, type of exercise, duration of exercise, intensity of exercise, frequency of exercise, physiological parameters (e.g., pulse, blood pressure, oxygen consumption, carbon dioxide production) occurring during exercise, and the like.
At operation 2706, the accepting operation 2320 may include accepting input related to nutritional characteristics related to the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to nutritional characteristics related to one or more individuals. Input related to nutritional characteristics may include, but is not limited to, types of food consumed (e.g., functional foods), types of beverages consumed, number of calories consumed, composition of consumed items (e.g., fat content, cholesterol content, oil content, caloric content), times of consumption, and the like.
At operation 2708, the accepting operation 2320 may include accepting input related to substance use by the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to substance use by the one or more individuals. Examples of such input include, but are not limited to, alcohol use, tobacco use, nicotine intake, pharmaceutical use, illicit drug use, food supplement use, nutraceutical use, and the like.
At operation 2710, the accepting operation 2320 may include accepting input related to weight of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to weight of one or more individuals. One or more accepting units 110 may accept input related to present weight, past weight, future weight goals, or substantially any combination thereof.
FIG. 28 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 28 illustrates example embodiments where the accepting operation 2320 may include at least one additional operation. Additional operations may include an operation 2802, an operation 2804, an operation 2806, an operation 2808, and/or an operation 2810.
At operation 2802, the accepting operation 2320 may include accepting input related to body composition of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to body composition of one or more individuals. The results from numerous body composition tests may be accepted by one or more accepting units 110. Examples of such tests include, but are not limited to, skinfold measurement, body mass index, waist to hip ratio, hydrostatic weighing, bioelectric impedance, dual-energy X-ray absorptiometry, near infrared interactance, total body potassium, whole-body air-displacement plethysmography, magnetic resonance imaging, total body electrical conductivity, computed tomography, total body protein, or substantially any combination thereof.
At operation 2804, the accepting operation 2320 may include accepting input related to circulatory characteristics of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to circulatory characteristics of one or more individuals. One or more accepting units 110 may accept input related to numerous types of circulatory characteristics. Examples of such circulatory characteristics include, but are not limited to, blood pressure, hypertension, heart rate, vasoelasticity, cholesterol levels, coronary heart disease, atherosclerosis, and the like.
At operation 2806, the accepting operation 2320 may include accepting input related to mood of the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to the mood of one or more individuals. Examples of various moods that may be input include, but are not limited to, happiness, sadness, loneliness, confusion, forgetfulness, joy, glee, euphoria, hopelessness, anger, rage, love, contempt, hate, frustration, and the like.
At operation 2808, the accepting operation 2320 may include accepting input related to one or more proteins expressed within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to one or more proteins expressed within one or more individuals. For example, the enzyme 5,10-methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate, required for purine and thymidine syntheses, to 5-methyltetrahydrofolate, the primary circulatory form of folate necessary for methionine synthesis. A common mutation (677C→T) in 5,10-methylenetetrahydrofolate reductase reduces enzyme activity, leading to lower levels of 5-methyltetrahydrofolate. It has been determined that men having adequate folate levels who are hom*ozygous for the mutation (677T/677T)) exhibit a three-fold decrease in risk of colorectal cancer when compared to men having adequate folate levels who are hom*ozygous normal (677C/677C) or heterozygous (677C/677T). However, the protection due to the mutation was absent in men with folate deficiency. In men with the hom*ozygous normal genotype who drink little or no alcohol as reference, men with the hom*ozygous mutation who drink little or no alcohol have an eight-fold decrease in risk and moderate drinkers exhibit a two-fold reduction in risk (Ma et al., Cancer Research, 57:1098-1102 (1997)). Polymorphisms in genes involved in folate metabolism have also been linked to maternal risk factors for Down Syndrome, neural tube defects, and oral clefts (Mills et al., Am. J. Med. Genet., 86:71-74 (1999); Wilson et al., Mol. Genet. Metab., 67:317-323 (1999); Hobbs et al., Am. J. Med. Genet., 67:623-630 (2000)). Accordingly, in some embodiments, information related to production of one or more proteins within an individual may be input. Such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. In some embodiments, one or more accepting units 110 may accept input related to the concentration of one or more proteins expressed within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more proteins expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous proteins and properties of proteins expressed within an individual.
At operation 2810, the accepting operation 2320 may include accepting input related to expression of one or more genes within the one or more individuals. In some embodiments, one or more accepting units 110 may accept input related to expression of one or more genes within one or more individuals. In some embodiments, such information may be used during the selection of nutraceuticals for administration to an individual. Such information may also be used to suggest health-related information. For example, folate status and common variations in genes that code for folate dependent enzymes are linked to many types of cancer, vascular disease, birth defects, and complications of pregnancy. This arises because several molecular mechanisms that underpin the genomic machinery are sensitive to B vitamin status and, in particular, are responsive to the interaction between folate nutrition and folate dependent enzyme polymorphisms (Luco*ck, B M J, 328:211-214 (2004)). Accordingly, genetic information may be utilized during the selection of one or more nutraceuticals for administration to an individual. In another example, black tea polyphenols (e.g., a theaflavin-3-monogallate and theaflavin-3′-monogallate mixture) have been shown to suppress cyclooxygenase 2 (Cox-2) gene expression at both the messenger ribonucleic acid and protein level (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). Pharmacological inhibition of COX can provide relief from the symptoms of inflammation and pain. Accordingly, in some embodiments, input related to COX gene expression may be accepted by one or more accepting units 110 to follow nutraceutical mediated inhibition of COX expression. Black tea extracts also exhibit chemoprotective activity (Lu et al., Cancer Reserch, 60:6465-6471 (2000)). In another example, a resveratrol analog (3,4,5,4′-tetrahydroxystilbene) has been shown to differentially induce pro-apoptotic p53/Bax gene expression and inhibit the growth of transformed cells but not their normal counterparts (Lu et al., Carcinogenesis, 22:321-328 (2001)). Accordingly, p53/Bax gene expression may be input to follow resveratrol analog mediated induction of gene expression. Numerous nutraceuticals mediate induction or inhibition of gene expression (e.g., Chen et al., Cancer Letters, 129:173-179 (1998); British J. Cancer, 92:513-521 (2005)). In another example, dietary omega-3 polyunsaturated fatty acids were shown to affect brain gene expression (Kitajka et al., PNAS, 101:10931-10936 (2004)). In some embodiments, one or more accepting units 110 may accept input related to the expression level of one or more genes within an individual. In some embodiments, one or more accepting units 110 may accept input related to the activity of one or more gene products expressed within an individual. Accordingly, one or more accepting units 110 may accept information related to numerous genes and the products of gene expression within an individual.
FIG. 29 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 29 illustrates example embodiments where the processing operation 2330 may include at least one additional operation. Additional operations may include an operation 2902, an operation 2904, and/or an operation 2906.
At operation 2902, the processing operation 2330 may include comparing the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may compare input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals. One or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one or more individuals. For example, in some embodiments, serotonin usage may be compared with the amount of sleep obtained by an individual. In some embodiments, caffeine usage may be compared with the amount of sleep obtained by an individual. In some embodiments, 5-hydroxytryptophan usage may be compared to the mood of an individual. In some embodiments, lithium usage may be compared to suppression of antipsychotic symptoms. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one individual. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to more than one individual. In some embodiments, one or more computational units 120 may compare numerous types of input associated with nutraceutical usage and numerous types of input associated with parameters related to one individual to one or more other individuals. For example, in some embodiments, nutraceutical usage and parameters associated with an individual may be compared to nutraceutical usage and parameters associated with one or more other individuals.
At operation 2904, the processing operation 2330 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may calculate one or more ratios of input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals. For example, in some embodiments, one or more computational units 120 may calculate the ratio of nutraceutical dosage (e.g., hoodia) to a determined parameter (e.g., weight loss) at one or more given times. In such instances, the individual ratios could be plotted over time to determine if there was a correlation of nutraceutical usage and the parameter (e.g., weight loss). In some embodiments, such ratios related to an individual could be compared to substantially similar ratios related to other individuals. Such a comparison would allow an individual to compare themselves to other individuals. Numerous different types of nutraceutical usages and parameters may be used during the calculation of ratios.
At operation 2906, the processing operation 2330 may include calculating one or more ratios of the input associated with the nutraceutical usage by the one or more individuals to the input associated with the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may calculate one or more ratios of input associated with nutraceutical usage by one or more individuals to input associated with one or more parameters related to the one or more individuals at two or more times. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to determine if nutraceutical usage affects the one or more parameters. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to titrate the dosage of the one or more nutraceuticals relative to one or more parameters. In some embodiments, the ratio of nutraceutical usage and one or more parameters can be compared at two or more times to determine if nutraceutical usage affects the one or more parameters. In some embodiments, one or more ratios related to one individual may be compared to substantially similar ratios related to one or more other individuals.
FIG. 30 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 30 illustrates example embodiments where the processing operation 2330 may include at least one additional operation. Additional operations may include an operation 3002, an operation 3004, an operation 3006, and/or an operation 3008.
At operation 3002, the processing operation 2330 may include determining one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may determine one or more changes in nutraceutical usage by one or more individuals at two or more times. For example, in some embodiments, an individual may change the dosage of one or more nutraceuticals. In some embodiments, an individual may change the identity of one or more nutraceuticals. In some embodiments, an individual may change the route of administration of one or more nutraceuticals. In some embodiments, an individual may change the time of administration of one or more nutraceuticals. Accordingly, in some embodiments, one or more computational units 120 may determine one or more changes in nutraceutical usage and correlate the change in nutraceutical usage with one or more changes in one or more parameters related to one or more individuals. For example, in some embodiments, changes in serotonin usage (e.g., dosage, time of administration) may be correlated with sleep acquisition by an individual. In some embodiments, changes in 5-hydroxytryptophan usage may be correlated with the mood of an individual. Numerous changes in nutraceutical usage may be determined and correlated to one or more parameters related to an individual.
At operation 3004, the processing operation 2330 may include determining one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may determine one or more changes in one or more parameters related to one or more individuals. Examples of parameters that may change include, but are not limited to, physical parameters, mental parameters, physiological parameters, and the like. In some embodiments, changes in one or more parameters may be correlated to nutraceutical usage by an individual. In some embodiments, changes in one or more parameters may be correlated to changes in nutraceutical usage by an individual.
At operation 3006, the processing operation 2330 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to the one or more changes in the one or more parameters related to the one or more individuals. In some embodiments, one or more computational units 120 may compare one or more changes in nutraceutical usage by one or more individuals to one or more changes in one or more parameters related to the one or more individuals. Numerous changes in nutraceutical usage may be compared. Examples of such changes in nutraceutical usage include, but are not limited to, dosage, time of administration, route of administration, formulation, manufacturer, and the like. Numerous changes in parameters may be compared. Examples of such changes in parameters include, but are not limited to, mental parameters, physical parameters, social parameters, sleep parameters, and the like. In some embodiments, one or more changes in nutraceutical usage by an individual may be compared to changes in one or more parameters related to the individual. In some embodiments, one or more changes in nutraceutical usage by an individual may be compared to changes in one or more parameters related to one or more other individuals. For example, in some embodiments, an individual may determine how a change in their personal nutraceutical usage changes one or more parameters when compared to a substantially similar change by one or more other individuals. In some embodiments, one or more computational units 120 may compare the nutraceutical usage by an individual to one or more changes in one or more parameters related to the individual and also to substantially similar changes in one or more other individuals to suggest a course of nutraceutical usage for the individual. For example, in some embodiments, the computational unit 120 may suggest a higher dosage of one or more nutraceuticals for administration to an individual if it is determined that a higher dosage will produce an effect based on changes resulting in one or more other individuals. Numerous comparisons may be made by one or more computational units 120.
At operation 3008, the processing operation 2330 may include comparing one or more changes in the nutraceutical usage by the one or more individuals to the one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more computational units 120 may compare one or more changes in nutraceutical usage by one or more individuals to one or more changes in one or more parameters related to one or more individuals at two or more times. Numerous changes in nutraceutical usage may be compared. Examples of such changes in nutraceutical usage include, but are not limited to, dosage, time of administration, route of administration, formulation, manufacturer, and the like. Numerous changes in parameters may be compared. Examples of such changes in parameters include, but are not limited to, mental parameters, physical parameters, social parameters, sleep parameters, and the like.
FIG. 31 illustrates alternative embodiments of the example operational flow 2300 of FIG. 23. FIG. 31 illustrates example embodiments where the transmitting operation 2340 may include at least one additional operation. Additional operations may include an operation 3102, an operation 3104, an operation 3106, and/or an operation 3108.
At operation 3102, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with the identity of one or more nutraceuticals for administration to one or more individuals.
At operation 3104, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to one or more individuals.
At operation 3106, the transmitting operation 2340 may include transmitting the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. Examples of health related recommendations may include, but are not limited to, recommendations associated with diet, sleep habits, substance use, weight, exercise, and the like.
At operation 3108, the transmitting operation 2340 may include transmitting the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals associated with comparing information related to input associated with nutraceutical usage and one or more parameters related to one or more individuals to substantially similar information related to one or more different individuals.
FIG. 32 illustrates an operational flow 3200 representing examples of operations that are related to the performance of one or more methods related to one or more nutraceuticals. In FIG. 32 and in following figures that include various examples of operations used during performance of the method, discussion and explanation may be provided with respect to the above-described example of FIG. 1, and/or with respect to other examples and contexts. However, it should be understood that the operations may be executed in a number of other environments and contexts, and/or modified versions of FIG. 1. Also, although the various operations are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently.
After a start operation, the operational flow 3200 includes a receiving operation 3210 involving receiving one or more signals that include information related to results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals. In some embodiments, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, the receiving operation 3210 may include receiving the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals.
After a start operation, the operational flow 3200 includes a determining operation 3220 involving determining one or more nutraceutical associated parameters based on the results of the processing. In some embodiments, the determining operation 3220 may include determining one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the determining operation 3220 may include determining one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the determining operation 3220 may include determining one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, the determining operation 3220 may include determining one or more health related recommendations for the one or more individuals.
After a start operation, the operational flow 3200 may include a transmitting operation 3230 involving transmitting the one or more signals that include information related to the determining one or more nutraceutical associated parameters based on the results of the processing. In some embodiments, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more health related recommendations for the one or more individuals.
FIG. 33 illustrates alternative embodiments of the example operational flow 3200 of FIG. 32. FIG. 33 illustrates example embodiments where the receiving operation 3210 may include at least one additional operation. Additional operations may include an operation 3302, an operation 3304, an operation 3306, and/or an operation 3308.
At operation 3302, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals associated with selection of one or more nutraceuticals for administration to one or more individuals. One or more signals may include numerous types of information that may be used during the selection of one or more nutraceuticals for administration to one or more individuals. Examples of such information may include, but are not limited to, mental parameters associated with an individual, physical parameters associated with an individual, social parameters associated with an individual, physiological parameters associated with an individual, and the like. Examples of parameters may include, but are not limited to, height, weight, age, fitness level, body mass index, body composition, sleep habits, substance usage, goals, medical history, allergies, and the like.
At operation 3304, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals associated with selection of one or more dosages of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more signals may include information related to parameters associated with an individual. Examples of such parameters include, but are not limited to, height, weight, metabolism, activity level, goals, schedule, occupation, and the like.
At operation 3306, the receiving operation 3210 may include receiving the one or more signals associated with selection of one or more nutraceuticals for administration to the one or more individuals and one or more health related recommendations. In some embodiments, one or more receiving units 150 may receive one or more signals associated with selection of one or more nutraceuticals for administration to one or more individuals and one or more health related recommendations. One or more signals may include numerous types of information that may be used during the selection of one or more nutraceuticals for administration to one or more individuals. Examples of such information may include, but are not limited to, mental parameters associated with an individual, physical parameters associated with an individual, social parameters associated with an individual, physiological parameters associated with an individual, and the like. Examples of such parameters may include, but are not limited to, height, weight, age, fitness level, body mass index, body composition, sleep habits, substance usage, goals, medical history, allergies, and the like. One or more signals may also include information related to one or more health related recommendations. For example, in some embodiments, one or more signals may include information related to the weight, body mass index, and body fat percentage of an individual. Accordingly, such information may be used to determine nutraceuticals, a diet plan, and an exercise plan that may be used by an individual to reach a fitness goal. In some embodiments, one or more signals may include information related to sleep habits, stimulant consumption, work habits, schedule, and the like. Such information may be used to suggest one or more nutraceuticals and a sleep schedule that may be used by an individual to improve their sleep acquisition.
At operation 3308, the receiving operation 3210 may include receiving the one or more signals associated with comparing the information related to the input associated with the nutraceutical usage and the one or more parameters related to the one or more individuals to substantially similar information related to one or more different individuals. In some embodiments, one or more receiving units 150 may receive one or more signals associated with comparing information related to input associated with nutraceutical usage and one or more parameters related to one or more individuals to substantially similar information related to one or more different individuals. In some embodiments, one or more signals include information that provides for comparison of an individual's nutraceutical usage and parameters associated with the individual with nutraceutical usage and parameters associated with one or more other individuals. Accordingly, the one or more signals may be used to improve an individual's nutraceutical usage through use of substantially similar information associated with other individuals.
FIG. 34 illustrates alternative embodiments of the example operational flow 3200 of FIG. 32. FIG. 33 illustrates example embodiments where the determining operation 3220 may include at least one additional operation. Additional operations may include an operation 3402, an operation 3404, an operation 3406, and/or an operation 3408.
At operation 3402, the determining operation 3220 may include determining one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more determining units may determine one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more determining units may utilize input associated with nutraceutical usage and one or more parameters related to an individual to determine one or more nutraceuticals for administration to the individual. For example, in some embodiments, one or more determining units may select one or more nutraceuticals that do not contraindicate one or more pharmaceuticals being used by an individual. In some embodiments, one or more determining units may select one or more nutraceuticals that do not contraindicate one or more other nutraceuticals that are being used by an individual. In some embodiments, one or more determining units may select one or more nutraceuticals to attain one or more goals of the individual (e.g., weight loss, sleep acquisition, alertness, mood alteration, hormonal balance, weight gain). In some embodiments, one or more determining units may select one or more nutraceuticals in accordance with the propensity of an individual to develop a malady. For example, in some embodiments, one or more determining units may select calcium supplements for administration to persons who exhibit symptoms of, or who may be at risk of developing, osteoporosis. In some embodiments, one or more determining units may select one or more nutraceuticals with consideration given to time. For example, in some embodiments, an individual may exhibit serotonin levels that are inconsistent with sleep acquisition during desired hours by an individual. Accordingly, one or more determining units may determine one or more nutraceuticals for use by an individual to increase sleep acquisition. In some embodiments, the one or more determining units may select one or more nutraceuticals and suggest one or times for administration to an individual. Numerous nutraceuticals and administration schemes may be determined by one or more determining units.
At operation 3404, the determining operation 3220 may include determining one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more determining units may determine one or more concentrations of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more determining units may utilize input associated with nutraceutical usage and one or more parameters related to an individual to determine one or more concentrations of one or more nutraceuticals for administration to the individual. One or more determining units may utilize numerous types of parameters. Examples of such parameters include, but are not limited to, weight, metabolism, activity level, exercise habits, goals, and the like. For example, in some embodiments, one or more determining units may determine that a higher dosage of a nutraceutical is appropriate for a larger person and a lower dosage is appropriate for a smaller person. In some embodiments, one or more determining units may determine one or more concentrations of one or more nutraceuticals to be within a range of concentrations. For example, in some embodiments, one or more determining units may determine a range of concentrations of melotonin for administration to an individual that enable the individual to acquire a desired amount of sleep without causing the individual to be drowsy during daytime hours. Accordingly, one or more determining units may determine numerous concentrations of numerous types of nutraceuticals for administration to an individual.
At operation 3406, the determining operation 3220 may include determining one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, one or more determining units may determine one or more nutraceutical formulations for administration to one or more individuals. In some embodiments, one or more determining units may utilize input associated with nutraceutical usage and one or more parameters related to an individual to determine one or more nutraceutical formulations for administration to the individual. Numerous formulations may be selected. Examples of such formulations include, but are not limited to, sublingual formulations, oral formulations, transdermal formulations, cream-based formulations, suppositories, inhaled formulations, nasally administered formulations, and the like.
At operation 3408, the determining operation 3220 may include determining one or more health related recommendations for the one or more individuals. In some embodiments, one or more determining units may determine one or more health related recommendations for one or more individuals. In some embodiments, one or more determining units may utilize input associated with nutraceutical usage and one or more parameters related to an individual to determine one or more health related recommendations for one or more individuals. Examples of health related recommendations include, but are not limited to, recommendations related to eating habits, substance use, exercise, physical activities, sleep acquisition, and the like.
FIG. 35 illustrates alternative embodiments of the example operational flow 3200 of FIG. 32. FIG. 35 illustrates example embodiments where the transmitting operation 3230 may include at least one additional operation. Additional operations may include an operation 3502, an operation 3504, an operation 3506, and/or an operation 3508.
At operation 3502, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to determining one or more nutraceutical associated parameters based on the results of processing. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to the identity of one or more nutraceuticals for administration to an individual. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to one or more times of administration for one or more nutraceuticals to an individual. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to the concentration of one or more nutraceuticals for administration to an individual. Accordingly, numerous types of information may be transmitted by one or more transmitting units 140.
At operation 3504, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to determining one or more nutraceutical associated parameters based on the results of processing.
At operation 3506, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to determining one or more nutraceutical associated parameters based on the results of processing. Information related to numerous types of formulations may be transmitted. Examples of such formulations include, but are not limited to, sublingual formulations, oral formulations, transdermal formulations, cream-based formulations, suppositories, inhaled formulations, nasally administered formulations, and the like.
At operation 3508, the transmitting operation 3230 may include transmitting the one or more signals that include information related to one or more health related recommendations for the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to one or more health related recommendations for the one or more individuals. In some embodiments, one or more transmitting units 140 may transmit one or more signals that include information related to determining one or more nutraceutical associated parameters based on the results of processing. Information related to numerous types of health related recommendations may be transmitted. Examples of health related recommendations include, but are not limited to, recommendations related to eating habits, substance use, exercise, physical activities, sleep acquisition, and the like.
FIG. 36 illustrates an operational flow 3600 representing examples of operations that are related to the performance of one or more methods related to one or more nutraceuticals. In FIG. 36 and in following figures that include various examples of operations used during performance of the method, discussion and explanation may be provided with respect to the above-described example of FIG. 1, and/or with respect to other examples and contexts. However, it should be understood that the operations may be executed in a number of other environments and contexts, and/or modified versions of FIG. 1. Also, although the various operations are presented in the sequence(s) illustrated, it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently.
After a start operation, the operational flow 3600 includes a receiving operation 3610 involving receiving one or more signals that include information related to determining one or more nutraceutical associated parameters based on results of processing input associated with nutraceutical usage by one or more individuals and input associated with one or more parameters related to the one or more individuals. In some embodiments, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more health related recommendations for the one or more individuals.
After a start operation, the operational flow 3600 includes a displaying operation 3620 involving displaying the information. In some embodiments, the displaying operation 3620 may include displaying the results of the processing on one or more active displays. In some embodiments, the displaying operation 3620 may include displaying the results of the processing on one or more passive displays. In some embodiments, the displaying operation 3620 may include displaying the results of the processing in numeric format. In some embodiments, the displaying operation 3620 may include displaying the results of the processing in graphical format. In some embodiments, the displaying operation 3620 may include displaying the results of the processing in audio format. In some embodiments, the displaying operation 3620 may include displaying a comparison of one individual with one or more other individuals. In some embodiments, the displaying operation 3620 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, the displaying operation 3620 may include displaying one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, the displaying operation 3620 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times and one or more changes in the one or more parameters related to the one or more individuals at two or more times.
FIG. 37 illustrates alternative embodiments of the example operational flow 3600 of FIG. 36. FIG. 37 illustrates example embodiments where the receiving operation 3610 may include at least one additional operation. Additional operations may include an operation 3702, an operation 3704, an operation 3706, and/or an operation 3708.
At operation 3702, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that include information related to one or more nutraceuticals for administration to one or more individuals. For example, in some embodiments, one or more receiving units 150 may receive one or more signals that indicate nutraceuticals that do not contraindicate one or more pharmaceuticals being used by an individual. In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more nutraceuticals that do not contraindicate one or more other nutraceuticals that are being used by an individual. In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more nutraceuticals that may be used by an individual to attain one or more goals (e.g., weight loss, sleep acquisition, alertness, mood alteration, hormonal balance, weight gain). In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more nutraceuticals that are to be used by an individual who has a propensity to develop a malady. For example, in some embodiments, one or more receiving units 150 may receive one or more signals that include information to select calcium supplements for administration to persons who exhibit symptoms of, or who may be at risk of developing, osteoporosis. In some embodiments, an individual may exhibit serotonin levels that are inconsistent with sleep acquisition during desired hours by an individual. Accordingly, one or more receiving units 150 may receive one or more signals that indicate one or more nutraceuticals for use by an individual to increase sleep acquisition. In some embodiments, the one or more receiving units 150 may receive one or more signals that indicate one or more nutraceuticals and suggest one or times for administration to an individual.
At operation 3704, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that include information related to one or more concentrations of one or more nutraceuticals for administration to one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that are associated with nutraceutical usage and one or more parameters related to an individual to indicate one or more concentrations of one or more nutraceuticals for administration to the individual. One or more receiving units 150 may receive one or more signals that may include numerous types of parameters. Examples of such parameters include, but are not limited to, weight, metabolism, activity level, exercise habits, goals, and the like. For example, in some embodiments, one or more receiving units 150 may receive one or more signals that indicate that a higher dosage of a nutraceutical is appropriate for a larger person and a lower dosage is appropriate for a smaller person. In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more concentrations of one or more nutraceuticals that are within a range of concentrations. For example, in some embodiments, one or more receiving units 150 may receive one or more signals that indicate a range of concentrations of melotonin for administration to an individual that enable the individual to acquire a desired amount of sleep without causing the individual to be drowsy during daytime hours. Accordingly, one or more receiving units 150 may receive one or more signals that indicate numerous concentrations of numerous types of nutraceuticals for administration to an individual.
At operation 3706, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more nutraceutical formulations for administration to the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that include information related to one or more nutraceutical formulations for administration to one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more nutraceutical formulations for administration to the individual. Numerous formulations may be indicated. Examples of such formulations include, but are not limited to, sublingual formulations, oral formulations, transdermal formulations, cream-based formulations, suppositories, inhaled formulations, nasally administered formulations, and the like.
At operation 3708, the receiving operation 3610 may include receiving the one or more signals that include information related to one or more health related recommendations for the one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that include information related to one or more health related recommendations for one or more individuals. In some embodiments, one or more receiving units 150 may receive one or more signals that indicate one or more health related recommendations for one or more individuals. Examples of health related recommendations include, but are not limited to, recommendations related to eating habits, substance use, exercise, physical activities, sleep acquisition, and the like.
FIG. 38 illustrates alternative embodiments of the example operational flow 3600 of FIG. 36. FIG. 38 illustrates example embodiments where the displaying operation 3620 may include at least one additional operation. Additional operations may include an operation 3802, an operation 3804, an operation 3806, an operation 3808, and/or an operation 3810.
At operation 3802, the displaying operation 3620 may include displaying the results of the processing on one or more active displays. In some embodiments, one or more display units 130 may display results of processing on one or more active displays. Numerous active display units 130 are known and include, but are not limited to, quarter-video graphics array (QVGA), video graphics array (VGA), super video graphics array (SVGA), extended graphics array (XGA), wide extended graphics array (VGA), super extended graphics array (SXGA), ultra extended graphics array (UXGA), wide super extended graphics array (WSXGA), wide ultra extended graphics array (WUXGA).
At operation 3804, the displaying operation 3620 may include displaying the results of the processing on one or more passive displays. In some embodiments, one or more display units 130 may display results of processing on one or more passive displays. In some embodiments, one or display units 130 may include one or more liquid crystal displays (LCD). Methods to construct passive displays have been described (e.g., U.S. Pat. Nos. 4,807,967; 4,729,636; 4,436,378; 4,257,041; herein incorporated by reference).
At operation 3806, the displaying operation 3620 may include displaying the results of the processing in numeric format. In some embodiments, one or more display units 130 may display results of processing in numeric format.
At operation 3808, the displaying operation 3620 may include displaying the results of the processing in graphical format. In some embodiments, one or more display units 130 may display results of processing in graphical format. Numerous types of graphical formats may be used. Examples of such graphical formats include, but are not limited to, use of shapes, use of colors, use of symbols (e.g., smiley face, frowny face, thumbs up sign, thumbs down sign, histograms, bar graphs, pie charts, and the like).
At operation 3810, the displaying operation 3620 may include displaying the results of the processing in audio format. In some embodiments, one or more display units 130 may display results of processing in audio format. In some embodiments, the results of processing may be presented in voice format. For example, in some embodiments, a voice may tell an individual to increase, decrease, or maintain one or more dosages of one or more nutraceuticals. In some embodiments, sounds may be used to indicate changes in nutraceutical usage and/or parameters related to an individual. In some embodiments, applause, cheering, and the like may be used to indicate a positive change. Examples of positive changes include, but are not limited to, weight loss, lowered blood pressure, lowered heart rate, and the like. In some embodiments, booing, hissing, nagging, and the like may be used to indicate a negative change. Examples of negative changes include, but are not limited to, weight gain, increased blood pressure, increased heart rate, and the like.
FIG. 39 illustrates alternative embodiments of the example operational flow 3600 of FIG. 36. FIG. 39 illustrates example embodiments where the displaying operation 3620 may include at least one additional operation. Additional operations may include an operation 3902, an operation 3904, an operation 3906, and/or an operation 3908.
At operation 3902, the displaying operation 3620 may include displaying a comparison of one individual with one or more other individuals. In some embodiments, one or more display units 130 may display a comparison of one individual with one or more other individuals. Numerous display formats may be used. In some embodiments, one or more runners may be depicted on a visual display as participating in a race such that an individual will be depicted according to their position in the race. For example, if an individual is leading a group in weight loss, they may be depicted as running in first place in a foot race. However, if the individual is behind a group in weight loss, they may be depicted as running in last place in a foot race. In some embodiments, individuals may be depicted as individual bars in a bar graph. In some embodiments, individuals may be depicted as slices of a pie chart. Accordingly, numerous formats may be used to display a comparison of an individual to one or more other individuals.
At operation 3904, the displaying operation 3620 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in nutraceutical usage by one or more individuals at two or more times. For example, in some embodiments, one or more display units 130 may display changes in the dosage of one or more nutraceuticals relative to a starting dosage at two or more times. In some embodiments, one or more display units 130 may display changes in the formulation of one or more nutraceuticals relative to a starting formulation at two or more times. Numerous changes may be displayed.
At operation 3906, the displaying operation 3620 may include displaying one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in parameters related to one or more individuals at two or more times. For example, in some embodiments, one or more display units 130 may display changes in the weight of an individual at two or more times. Numerous changes may be displayed.
At operation 3908, the displaying operation 3620 may include displaying one or more changes in the nutraceutical usage by the one or more individuals at two or more times and one or more changes in the one or more parameters related to the one or more individuals at two or more times. In some embodiments, one or more display units 130 may display one or more changes in nutraceutical usage by one or more individuals at two or more times and one or more changes in parameters related to the one or more individuals at two or more times. Accordingly, changes in nutraceutical usage may be displayed relative to changes in parameters over time. In some embodiments, such a display may be used to titrate nutraceutical usage to achieve a desired result.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems and/or other technologies described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes and/or systems and/or other technologies are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a mainly hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a mainly software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes and/or devices and/or other technologies described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations will typically employ optically-oriented hardware, software, and/or firmware.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal-bearing medium used to actually carry out the distribution. Examples of a signal-bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
In a general sense, those skilled in the art will recognize that the various embodiments described herein can be implemented, individually and/or collectively, by various types of electro-mechanical systems having a wide range of electrical components such as hardware, software, firmware, or virtually any combination thereof; and a wide range of components that may impart mechanical force or motion such as rigid bodies, spring or torsional bodies, hydraulics, and electro-magnetically actuated devices, or virtually any combination thereof. Consequently, as used herein “electro-mechanical system” includes, but is not limited to, electrical circuitry operably coupled with a transducer (e.g., an actuator, a motor, a piezoelectric crystal, etc.), electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment), and any non-electrical analog thereto, such as optical or other analogs. Those skilled in the art will also appreciate that examples of electro-mechanical systems include but are not limited to a variety of consumer electronics systems, as well as other systems such as motorized transport systems, factory automation systems, security systems, and communication/computing systems. Those skilled in the art will recognize that electro-mechanical as used herein is not necessarily limited to a system that has both electrical and mechanical actuation except as context may dictate otherwise.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
Those skilled in the art will recognize that it is common within the art to implement devices and/or processes and/or systems in the fashion(s) set forth herein, and thereafter use engineering and/or business practices to integrate such implemented devices and/or processes and/or systems into more comprehensive devices and/or processes and/or systems. That is, at least a portion of the devices and/or processes and/or systems described herein can be integrated into other devices and/or processes and/or systems via a reasonable amount of experimentation. Those having skill in the art will recognize that examples of such other devices and/or processes and/or systems might include—as appropriate to context and application—all or part of devices and/or processes and/or systems of (a) an air conveyance (e.g., an airplane, rocket, hovercraft, helicopter, etc.), (b) a ground conveyance (e.g., a car, truck, locomotive, tank, armored personnel carrier, etc.), (c) a building (e.g., a home, warehouse, office, etc.), (d) an appliance (e.g., a refrigerator, a washing machine, a dryer, etc.), (e) a communications system (e.g., a networked system, a telephone system, a voice-over IP system, etc.), (f) a business entity (e.g., an Internet Service Provider (ISP) entity such as Comcast Cable, Quest, Southwestern Bell, etc), or (g) a wired/wireless services entity (e.g., such as Sprint, Cingular, Nextel, etc.), etc.
Although user 170 is shown/described herein as a single illustrated figure, those skilled in the art will appreciate that a user 170 may be representative of a human user 170, a robotic user 170 (e.g., computational entity), and/or substantially any combination thereof (e.g., a user 170 may be assisted by one or more robotic). In addition, a user 170 as set forth herein, although shown as a single entity may in fact be composed of two or more entities. Those skilled in the art will appreciate that, in general, the same may be said of “sender” and/or other entity-oriented terms as such terms are used herein.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable”, to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
All publications, patents and patent applications cited herein are incorporated herein by reference. The foregoing specification has been described in relation to certain embodiments thereof, and many details have been set forth for purposes of illustration, however, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.